scholarly journals Approaches for testing hypotheses for the hypometric scaling of aerobic metabolic rate in animals

2018 ◽  
Vol 315 (5) ◽  
pp. R879-R894 ◽  
Author(s):  
Jon F. Harrison

Hypometric scaling of aerobic metabolism [larger organisms have lower mass-specific metabolic rates (MR/g)] is nearly universal for interspecific comparisons among animals, yet we lack an agreed upon explanation for this pattern. If physiological constraints on the function of larger animals occur and limit MR/g, these should be observable as direct constraints on animals of extant species and/or as evolved responses to compensate for the proposed constraint. There is evidence for direct constraints and compensatory responses to O2 supply constraint in skin-breathing animals, but not in vertebrates with gas-exchange organs. The duration of food retention in the gut is longer for larger birds and mammals, consistent with a direct constraint on nutrient uptake across the gut wall, but there is little evidence for evolving compensatory responses to gut transport constraints in larger animals. Larger placental mammals (but not marsupials or birds) show evidence of greater challenges with heat dissipation, but there is little evidence for compensatory adaptations to enhance heat loss in larger endotherms, suggesting that metabolic rate (MR) more generally balances heat loss for thermoregulation in endotherms. Size-dependent patterns in many molecular, physiological, and morphological properties are consistent with size-dependent natural selection, such as stronger selection for neurolocomotor performance and growth rate in smaller animals and stronger selection for safety and longevity in larger animals. Hypometric scaling of MR very likely arises from different mechanisms in different taxa and conditions, consistent with the diversity of scaling slopes for MR.

2020 ◽  
Vol 319 (2) ◽  
pp. E438-E446
Author(s):  
Vojtěch Škop ◽  
Naili Liu ◽  
Juen Guo ◽  
Oksana Gavrilova ◽  
Marc L. Reitman

Understanding mouse thermal physiology informs the usefulness of mice as models of human disease. It is widely assumed that the mouse tail contributes greatly to heat loss (as it does in rat), but this has not been quantitated. We studied C57BL/6J mice after tail amputation. Tailless mice housed at 22°C did not differ from littermate controls in body weight, lean or fat content, or energy expenditure. With acute changes in ambient temperature from 19 to 39°C, tailless and control mice demonstrated similar body temperatures (Tb), metabolic rates, and heat conductances and no difference in thermoneutral point. Treatment with prazosin, an α1-adrenergic antagonist and vasodilator, increased tail temperature in control mice by up to 4.8 ± 0.8°C. Comparing prazosin treatment in tailless and control mice suggested that the tail’s contribution to total heat loss was a nonsignificant 3.4%. Major heat stress produced by treatment at 30°C with CL316243, a β3-adrenergic agonist, increased metabolic rate and Tb and, at a matched increase in metabolic rate, the tailless mice showed a 0.72 ± 0.14°C greater Tb increase and 7.6% lower whole body heat conductance. Thus, the mouse tail is a useful biomarker of vasodilation and thermoregulation, but in our experiments contributes only 5–8% of whole body heat dissipation, less than the 17% reported for rat. Heat dissipation through the tail is important under extreme scenarios such as pharmacological activation of brown adipose tissue; however, non-tail contributions to heat loss may have been underestimated in the mouse.


1979 ◽  
Vol 80 (1) ◽  
pp. 217-229 ◽  
Author(s):  
HEINRICH BERND

1. While foraging, attacking, or leaving or returning to their hives, both the African and European honeybees maintained their thoracic temperature at 30 °C or above, independent of ambient temperature from 7 to 23 °C (in shade). 2. Thoracic temperatures were not significantly different between African and European bees. 3. Thoracic temperatures were significantly different during different activities. Average thoracic temperatures (at ambient temperatures of 8–23 °C) were lowest (30 °C) in bees turning to the hive. They were 31–32 °C during foraging, and 36–38 °C in bees leaving the hive, and in those attacking. The bees thus warm up above their temperature in the hive (32 °C) before leaving the colony. 4. In the laboratory the bees (European) did not maintain the minimum thoracic temperature for continuous flight (27 °C) at 10 °C. When forced to remain in continuous flight for at least 2 min, thoracic temperature averaged 15 °C above ambient temperature from 15 to 25 °C, and was regulated only at high ambient temperatures (30–40 °C). 5. At ambient temperatures > 25 °C, the bees heated up during return to the hive, attack and foraging above the thoracic temperatures they regulated at low ambient temperatures to near the temperatures they regulated during continuous flight. 6. In both African and European bees, attack behaviour and high thoracic temperature are correlated. 7. The data suggest that the bees regulate thoracic temperature by both behavioural and physiological means. It can be inferred that the African bees have a higher metabolic rate than the European, but their smaller size, which facilitates more rapid heat loss, results in similar thoracic temperatures.


2000 ◽  
Vol 27 ◽  
pp. 39-53 ◽  
Author(s):  
G. C. Emmans ◽  
I. Kyriazakis

AbstractBreeders of poultry and pigs have selected for some combination of increased growth rate, decreased fatness and increased muscularity. Increasingly various fitness traits are included in the index used. The consequences of such selection include complex effects on nutritional and environmental requirements, at least some of which are reliably predictable using suitable models. Appropriate changes to the environment and to nutrition as selection proceeds will help to avoid unwanted effects occurring. Among the predictable effects are that higher ratios of nutrients to energy, and lower temperatures, will be needed by the improved genotypes. Selection for growth rate must eventually exhaust the capacity of the support systems – digestive, respiratory, circulatory and excretory – to cope with the increased metabolic rate. Selection for increased yield of valuable parts will cause these problems to occur earlier. While it is possible to predict that these problems will occur it cannot be predicted when they will. Breeders need to be aware of these problems, and use all possible routes to help them in reducing their severity. Where the appropriate actions for fitness selection, and nutritional and environmental modifications, are taken the occurrence of the problems will be delayed.


1982 ◽  
Vol 53 (2) ◽  
pp. 316-323 ◽  
Author(s):  
C. J. Gordon

Male CBA/J mice were administered heat loads of 0–28 J X g-1 at specific absorption rates (SARs) of either 47 or 93 W X kg-1 by exposure to 2,450-MHz microwave radiation at an ambient temperature of 30 degrees C while evaporative heat loss (EHL) was continuously monitored with dew-point hygrometry. At an SAR of 47 W X kg-1 a threshold heat load of 10.5 J X g-1 had to be exceeded before EHL increased. An approximate doubling of SAR to 93 W X kg-1 reduced the threshold to 5.2 J X g-1. Above threshold the slopes of the regression lines were 1.15 and 0.929 for the low- and high-SAR groups, respectively. Thus the difference in threshold and not slope attributes to the significant increase in EHL when mice are exposed at a high SAR (P less than 0.02). In separate experiments a SAR of 47 W X kg-1 raised the deep body temperature of anesthetized mice at a rate of 0.026 degrees C X s-1, whereas 93 W X kg-1 raised temperature at 0.049 degrees C X s-1. Hence the sensitivity of the EHL mode of heat dissipation is directly proportional to the rate of heat absorption and to the rate of rise in body temperature. These data contradict the notion that mammals have control over whole-body heat exchange only (i.e., thermoregulation) but instead indicate that the EHL system is highly responsive to the rate of heat absorption (i.e., temperature regulation).


2003 ◽  
Vol 16 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Javed Mazher ◽  
Shweta Badwe ◽  
Ragini Sengar ◽  
Dhirendra Gupta ◽  
R.K. Pandey

2020 ◽  
Vol 223 (21) ◽  
pp. jeb231761
Author(s):  
Yaara Aharon-Rotman ◽  
Gerhard Körtner ◽  
Chris B. Wacker ◽  
Fritz Geiser

ABSTRACTPrecocial birds hatch feathered and mobile, but when they become fully endothermic soon after hatching, their heat loss is high and they may become energy depleted. These chicks could benefit from using energy-conserving torpor, which is characterised by controlled reductions of metabolism and body temperature (Tb). We investigated at what age the precocial king quail Coturnix chinensis can defend a high Tb under a mild thermal challenge and whether they can express torpor soon after achieving endothermy to overcome energetic and thermal challenges. Measurements of surface temperature (Ts) using an infrared thermometer showed that king quail chicks are partially endothermic at 2–10 days, but can defend high Tb at a body mass of ∼13 g. Two chicks expressed shallow nocturnal torpor at 14 and 17 days for 4–5 h with a reduction of metabolism by >40% and another approached the torpor threshold. Although chicks were able to rewarm endogenously from the first torpor bout, metabolism and Ts decreased again by the end of the night, but they rewarmed passively when removed from the chamber. The total metabolic rate increased with body mass. All chicks measured showed a greater reduction of nocturnal metabolism than previously reported in quails. Our data show that shallow torpor can be expressed during the early postnatal phase of quails, when thermoregulatory efficiency is still developing, but heat loss is high. We suggest that torpor may be a common strategy for overcoming challenging conditions during development in small precocial and not only altricial birds.


1976 ◽  
Vol 230 (4) ◽  
pp. 920-924 ◽  
Author(s):  
RV Baudinette ◽  
JP Loveridge ◽  
KJ Wilson ◽  
CD Mills ◽  
K Schmidt-Nielsen

The role of the feet of herring gulls (Larus argentatus) in heat dissipation was estimated during rest and wind-tunnel flight. We determined the blood flow to the feet and the arteriovenous temperature difference and thus estimated heat loss from the feet. Determinations of oxygen consumption and respiratory water loss at rest gave a heat production of about 8 W; 37-56% of this heat was lost from the feet (air temp = 10-35 degrees C). During flight heat production was estimated to be about 57 W and heat loss from the feet was 46 W, about 80% of the heat production in flight. Thus the webbed feet are an important avenue of heat loss in the herring gull.


1962 ◽  
Vol 13 (1) ◽  
pp. 100 ◽  
Author(s):  
G Alexander

"Summit metabolism" was estimated by measuring respiratory exchange during a 20 min period of falling rectal temperature. The rate of fall was controlled at about 1°C per 20 min, by varying the wind velocity while the lamb was exposed to conditions of high heat loss. At body temperatures near normal, summit metabolism was not predictable from rectal temperature. Below 36°C the metabolic rate was proportional to rectal temperature. When expressed as kilocalories per kilogram per hour, summit metabolism in young lambs was approximately constant at all body weights, and hence summit, metabolism per unit of surface area increased with increasing body weight. Heavy lambs are therefore able to maintain homeothermy under conditions of higher heat loss than light lambs. Summit metabolism was usually established at about 17 kcal kg-1 hr-1 within half an hour of birth, i.e. heat production increased rapidly to 15 times foetal levels or five times "basal" levels. There was no increase after ingestion of milk, and the summit metabolic rate appeared to decline slowly with advancing age. It also declined during prolonged exposure to cold and during prolonged fasting, particularly in very young lambs. Blood analyses indicated a great mobilization of fat and carbohydrate during exposure to conditions which evoked a summit response. The practical significance of these results is discussed.


Sign in / Sign up

Export Citation Format

Share Document