scholarly journals Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Drosophila suzukii (Matsumara)

2019 ◽  
Vol 316 (6) ◽  
pp. R751-R763 ◽  
Author(s):  
Thomas Enriquez ◽  
Hervé Colinet

Chronic cold exposure is detrimental to chill susceptible insects that may accumulate chill injuries. To cope with deleterious effects of cold temperature, insects employ a variety of physiological strategies and metabolic adjustments, such as production of cryoprotectants, or remodeling of cellular membranes. Cold tolerance is a key element determining the fundamental niche of species. Because Drosophila suzukii is an invasive fruit pest, originating from East Asia, knowledge about its thermal biology is urgently needed. Physiological mechanisms underlying cold tolerance plasticity remain poorly understood in this species. Here, we explored metabolic and lipidomic modifications associated with the acquisition of cold tolerance in D. suzukii using Omics technologies (LC- and GC-MS/MS). In both cold-acclimated males and females, we observed physiological changes consistent with homeoviscous/homeophasic adaptation of membranes: reshuffling of phospholipid head groups and increasing unsaturation rate of fatty acids. Modification of fatty acids unsaturation were also observed in triacylglycerides, which would likely increase accessibility of lipid reserves. At the metabolic level, we observed clear-cut differentiation of metabolic profiles with cold-acclimated metabotypes showing accumulation of several potential cryoprotectants (sugars and amino acids). Metabolic pathway analyses indicated a remodeling of various processes, including purine metabolism and aminoacyl tRNA biosynthesis. These data provide a large-scale characterization of lipid rearrangements and metabolic pathway modifications in D. suzukii in response to cold acclimation and contribute to characterizing the strategies used by this species to modulate cold tolerance.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kunjing Wu ◽  
Xiaojing Duan ◽  
Zhonglong Zhu ◽  
Ziyang Sang ◽  
Jie Duan ◽  
...  

Abstract Background Magonlia denudata is an important perennial tree species of the Magnoliaceae family, known for its ornamental value, resistance to smoke pollution and wind, role in air purification, and robust cold tolerance. In this study, a high-throughput transcriptome analysis of leaf buds was performed, and gene expression following artificial acclimation 22 °C, 4 °C and 0 °C, was compared by RNA sequencing. Results Over 426 million clean reads were produced from three libraries (22 °C, 4 °C and 0 °C). A total of 74,503 non-redundant unigenes were generated, with an average length of 1173.7 bp (N50 = 1548). Based on transcriptional results, 357 and 235 unigenes were identified as being upregulated and downregulated under cold stress conditions, respectively. Differentially expressed genes were annotated using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses. The transcriptomic analysis focused on carbon metabolism and plant hormone signal transduction associated with cold acclimation. Transcription factors such as those in the basic helix-loop-helix and AP2/ERF families were found to play an important role in M. denudata cold acclimation. Conclusion M. denudata exhibits responses to non-freezing cold temperature (4 °C) to increase its cold tolerance. Cold resistance was further strengthened with cold acclimation under freezing conditions (0 °C). Cold tolerance genes, and cold signaling transcriptional pathways, and potential functional key components for the regulation of the cold response were identified in M. denudata. These results provide a basis for further studies, and the verification of key genes involved in cold acclimation responses in M. denudata lays a foundation for developing breeding programs for Magnoliaceae species.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


2005 ◽  
Vol 4 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Martin Nilsson Jacobi ◽  
Steen Rasmussen ◽  
Kolbjørn Tunstrøm

This paper is a discussion on how reaction kinetics and three-dimensional (3D) lattice simulations can be used to elucidate the dynamical properties of micelles as a possible minimal protocell container. We start with a general discussion on the role of molecular self-assembly in prebiotic and contemporary biological systems. A simple reaction kinetic model of a micellation process of amphiphilic molecules in water is then presented and solved analytically. Amphiphilic molecules are polymers with hydrophobic (water-fearing), e.g. hydrocarbon tail groups, and hydrophilic (water-loving) head groups, e.g. fatty acids. By making a few simplifying assumptions an analytical expression for the size distribution of the resulting micelles can be derived. The main part of the paper presents and discusses a lattice gas technique for a more detailed 3D simulation of molecular self-assembly of amphiphilic polymers in aqueous environments. Water molecules, hydrocarbon tail groups and hydrophilic head groups are explicitly represented on a three-dimensional discrete lattice. Molecules move on the lattice proportional to their continuous momentum. Collision rules preserve momentum and kinetic energy. Potential energy from molecular interactions are also included explicitly. The non-trivial thermodynamics of large-scale and long-time dynamics are studied. In this paper we specifically demonstrate how, from a random initial distribution, micelles are formed and grow until they destabilize and can divide. Eventually a steady state of growing and dividing micelles is formed. Towards the end of the paper we discuss the relevance of the presented results to the design of a minimal artificial protocell.


Biochimie ◽  
1999 ◽  
Vol 81 (6) ◽  
pp. 655-661 ◽  
Author(s):  
Véronique Santoni ◽  
Patrick Doumas ◽  
David Rouquié ◽  
Monique Mansion ◽  
Thierry Rabilloud ◽  
...  

Author(s):  
Hugh P. Taylor

ABSTRACTOxygen isotope data are very useful in determining the source rocks of granitic magmas, particularly when used in combination with Sr, Pb, and Nd isotope studies. For example, unusually high δ18O values in magmas (δ18O> +8) require the involvement of some precursor parent material that at some time in the past resided on or near the Earth's surface, either as sedimentary rocks or as weathered or hydrothermally altered rocks. The isotopic systematics which are preserved in the Mesozoic and Cenozoic batholiths of western North America can be explained by grand-scale mixing of three broadly defined end-members: (1) oceanic island-arc magmas derived from a “depleted” (MORB-type?) source in the upper mantle (δ18O c. +6 and 87Sr/86Sr c. 0·703); (2) a high-18O (c. +13 to +17) source with a very uniform 87Sr/86Sr (c. 0·708 to 0·712), derived mainly from eugeosynclinal volcanogenic sediments and (or) hydrothermally altered basalts; and (3) a much more heterogeneous source (87Sr/86Sr c. 0·706 to 0·750, or higher) with a high δ18O (c. +9 to +15) where derived from supracrustal metasedimentary rocks and a much lower δ18O (c. +7 to +9) where derived from the lower continental crust of the craton. These end-members were successively dominant from W to E, respectively, within three elongate N–S geographic zones that can be mapped from Mexico all the way N to Idaho.18O/16O studies (together with D/H analyses) can, however, play a more important and certainly a unique role in determining the origins of the aqueous fluids involved in the formation of granitic and rhyolitic magmas. Fluid-rock interaction effects are most clear-cut when low-18O, low-D meteoric waters are involved in the isotopic exchange and melting processes, but the effects of other waters such as seawater (with a relatively high δD c. 0) can also be recognised. Because of these hydrothermal processes, rocks that ultimately undergo partial melting may exhibit isotopic signatures considerably different from those that they started with. We discuss three broad classes of potential source materials of such “hydrothermal-anatectic” granitic magmas, based mainly on water/rock (w/r), temperature (T), and the length of time (t) that fluid-rock interaction proceeds: (Type 1) epizonal systems with a wide variation in whole-rock δ18O and extreme 18O/16O disequilibrium among coexisting minerals (e.g. quartz and feldspar); (Type 2) deeper-seated and (or) longer-lived systems, also with a wide spectrum of whole-rock δ18O, but with equilibrated 18O/16O ratios among coexisting minerals; (Type 3) thoroughly homogenised and equilibrated systems with relatively uniform δ18O in all lithologies. Low-18O magmas formed by melting of rocks altered in a Type 2 or a Type 3 meteoric-hydrothermal system are the only kinds of “hydrothermal-anatectic” granitic magmas that are readily recognisable in the geological record. Analogous effects produced by other kinds of aqueous fluids may, however, be quite common, particularly in areas of extensional tectonics and large-scale rifting. The greatly enhanced permeabilities in such fractured terranes make possible the deep convective circulation of ground waters and sedimentary pore fluids. The nature and origin of low-18O magmas in the Yellowstone volcanic field and the Seychelles Islands are briefly reviewed in light of these concepts, as is the development of high-D, peraluminous magmas in the Hercynian of the Pyrenees.


Sign in / Sign up

Export Citation Format

Share Document