Increased heat loss affects hibernation in golden-mantled ground squirrels

2004 ◽  
Vol 287 (1) ◽  
pp. R167-R173 ◽  
Author(s):  
Alexander S. Kauffman ◽  
Matthew J. Paul ◽  
Irving Zucker

During hibernation at ambient temperatures (Ta) above 0°C, rodents typically maintain body temperature (Tb) ∼1°C above Ta, reduce metabolic rate, and suspend or substantially reduce many physiological functions. We tested the extent to which the presence of an insulative pelage affects hibernation. Tb was recorded telemetrically in golden-mantled ground squirrels ( Spermophilus lateralis) housed at a Ta of 5°C; food intake and body mass were measured at regular intervals throughout the hibernation season and after the terminal arousal. Animals were subjected to complete removal of the dorsal fur or a control procedure after they had been in hibernation for 3–4 wk. Shaved squirrels continued to hibernate with little or no change in minimum Tb, bout duration, duration of periodic normothermic bouts, and food intake during normothermia. Rates of rewarming from torpor were, however, significantly slower in shaved squirrels, and rates of body mass loss were significantly higher, indicating increased depletion of white adipose energy stores. An insulative pelage evidently conserves energy over the course of the hibernation season by decreasing body heat loss and reducing energy expenditure during periodic arousals from torpor and subsequent intervals of normothermia. This prolongs the hibernation season by several weeks, thereby eliminating the debilitating consequences associated with premature emergence from hibernation.

2017 ◽  
Author(s):  
Katharine R. Grabek ◽  
Thomas F. Cooke ◽  
L. Elaine Epperson ◽  
Kaitlyn K. Spees ◽  
Gleyce F. Cabral ◽  
...  

AbstractHibernation is a highly dynamic phenotype whose timing, for many mammals, is controlled by a circannual clock and accompanied by rhythms in body mass and food intake. When housed in an animal facility, 13-lined ground squirrels exhibit individual variation in the seasonal onset of hibernation, which is not explained by environmental or biological factors, such as body mass and sex. We hypothesized that underlying genetic architecture instead drives variation in this timing. After first increasing the contiguity of the genome assembly, we therefore employed a genotype-by-sequencing approach to characterize genetic variation in 153 13-lined ground squirrels. Combining this with datalogger records, we estimated high heritability (61-100%) for the seasonal onset of hibernation. After applying a genome-wide scan with 46,996 variants, we also identified 21 loci significantly associated with hibernation immergence, which alone accounted for 54% of the variance in the phenotype. The most significant marker (SNP 15, p=3.81×10−6) was located near prolactin-releasing hormone receptor (PRLHR), a gene that regulates food intake and energy homeostasis. Other significant loci were located near genes functionally related to hibernation physiology, including muscarinic acetylcholine receptor M2 (CHRM2), involved in the control of heart rate, exocyst complex component 4 (EXOC4) and prohormone convertase 2 (PCSK2), both of which are involved in insulin signaling and processing. Finally, we applied an expression quantitative loci (eQTL) analysis using existing transcriptome datasets, and we identified significant (q<0.1) associations for 9/21 variants. Our results highlight the power of applying a genetic mapping strategy to hibernation and present new insight into the genetics driving its seasonal onset.


1998 ◽  
Vol 274 (3) ◽  
pp. R754-R759
Author(s):  
Sara M. Hiebert ◽  
Theresa M. Lee ◽  
Paul Licht ◽  
Irving Zucker

Gonadectomized male golden-mantled ground squirrels ( Spermophilus lateralis) were implanted with estradiol benzoate (EB)-filled or empty capsules. Body mass was monitored before, during, and for at least 1 yr after hormone treatment. EB treatment during the mass-gain phase of the annual cycle significantly decelerated increases in body mass; the period of the circannual rhythm (CAR) of body mass was 54 days longer in EB- than blank-treated squirrels. Hormone treatment during the mass-loss phase accelerated mass loss; although this effect only approached statistical significance, some phase markers of the CAR were significantly advanced in subsequent cycles. We conclude that, as in females, estradiol affects the waveform of the CAR of males differently at different phases of the circannual cycle. Sexual differentiation does not eliminate responsiveness of CARs of squirrels to estradiol; sex differences, if any, are subtle rather than absolute and, in this respect, differ from circadian rhythms.


1993 ◽  
Vol 174 (1) ◽  
pp. 299-320 ◽  
Author(s):  
G. N. Stone

1. This study examines variation in thoracic temperatures, rates of pre-flight warm-up and heat loss in the solitary bee Anthophora plumipes (Hymenoptera; Anthophoridae). 2. Thoracic temperatures were measured both during free flight in the field and during tethered flight in the laboratory, over a range of ambient temperatures. These two techniques give independent measures of thermoregulatory ability. In terms of the gradient of thoracic temperature on ambient temperature, thermoregulation by A. plumipes is more effective before flight than during flight. 3. Warm-up rates and body temperatures correlate positively with body mass, while mass-specific rates of heat loss correlate negatively with body mass. Larger bees are significantly more likely to achieve flight temperatures at low ambient temperatures. 4. Simultaneous measurement of thoracic and abdominal temperatures shows that A. plumipes is capable of regulating heat flow between thorax and abdomen. Accelerated thoracic cooling is only demonstrated at high ambient temperatures. 5. Anthophora plumipes is able to fly at low ambient temperatures by tolerating thoracic temperatures as low as 25 sC, reducing the metabolic expense of endothermic activity. 6. Rates of heat generation and loss are used to calculate the thermal power generated by A. plumipes and the total energetic cost of warm-up under different thermal conditions. The power generated increases with thoracic temperature excess and ambient temperature. The total cost of warm-up correlates negatively with ambient temperature.


2010 ◽  
Vol 12 (1) ◽  
pp. 285-296 ◽  
Author(s):  
Mary Brooke McEachern ◽  
Dirk H. Van Vuren ◽  
Chris H. Floyd ◽  
Bernie May ◽  
John M. Eadie

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
František Vejmělka ◽  
Jan Okrouhlík ◽  
Matěj Lövy ◽  
Gabriel Šaffa ◽  
Eviatar Nevo ◽  
...  

AbstractThe relatively warm and very humid environment of burrows presents a challenge for thermoregulation of its mammalian inhabitants. It was found that African mole-rats dissipate body heat mainly through their venter, and social mole-rats dissipate more body heat compared to solitary species at lower temperatures. In addition, the pattern of the ventral surface temperature was suggested to be homogeneous in social mole-rats compared to a heterogeneous pattern in solitary mole-rats. To investigate this for subterranean rodents generally, we measured the surface temperatures of seven species with different degrees of sociality, phylogeny, and climate using infrared thermography. In all species, heat dissipation occurred mainly through the venter and the feet. Whereas the feet dissipated body heat at higher ambient temperatures and conserved it at lower ambient temperatures, the ventral surface temperature was relatively high in all temperatures indicating that heat dissipation to the environment through this body region is regulated mainly by behavioural means. Solitary species dissipated less heat through their dorsum than social species, and a tendency for this pattern was observed for the venter. The pattern of heterogeneity of surface temperature through the venter was not related to sociality of the various species. Our results demonstrate a general pattern of body heat exchange through the three studied body regions in subterranean rodents. Besides, isolated individuals of social species are less able to defend themselves against low ambient temperatures, which may handicap them if staying alone for a longer period, such as during and after dispersal events.


Author(s):  
Keisuke Fukumura ◽  
Kenshiro Shikano ◽  
Yuaki Narimatsu ◽  
Eiko Iwakoshi-Ukena ◽  
Megumi Furumitsu ◽  
...  

Abstract We recently identified a novel hypothalamic small protein, named neurosecretory protein GL (NPGL), which is involved in energy homeostasis in birds and mammals. However, whether the action of NPGL is influenced by nutritional composition remains unknown. Thus, we investigated the effect of chronic intracerebroventricular infusion of NPGL for 13 days on feeding behavior and body mass gain under a normal chow diet (NC), high-fat diet, high-sucrose diet (HSD), and medium-fat/medium-sucrose diet (MFSD) in rats. NPGL stimulated food intake of NC and MFSD, especially during the light period. By contrast, NPGL decreased body mass gain under NC and increased total white adipose tissue mass in HSD- and MFSD-fed rats. These data suggest that the effects of NPGL on feeding behavior, body mass gain, and fat accumulation depend on nutrient type. Among them, sucrose in diets seems to contribute to fat accumulation elicited by NPGL.


1978 ◽  
Vol 235 (1) ◽  
pp. R41-R47
Author(s):  
M. T. Lin ◽  
I. H. Pang ◽  
S. I. Chern ◽  
W. Y. Chia

Elevating serotonin (5-HT) contents in brain with 5-hydroxytryptophan (5-HTP) reduced rectal temperature (Tre) in rabbits after peripheral decarboxylase inhibition with the aromatic-L-amino-acid decarboxylase inhibitor R04-4602 at two ambient temperatures (Ta), 2 and 22 degrees C. The hypothermia was brought about by both an increase in respiratory evaporative heat loss (Eres) and a decrease in metabolic rate (MR) in the cold. At a Ta of 22 degrees C, the hypothermia was achieved solely due to an increase in heat loss. Depleting brain contents of 5-HT with intraventricular, 5,7-dihydroxytryptamine (5,7-DHT) produced an increased Eres and ear blood flow even at Ta of 2 degrees C. Also, MR increased at all but the Ta of 32 degrees C. However, depleting the central and peripheral contents of 5-HT with p-chlorophenylalanine (pCPA) produced lower MR accompanied by lower Eres in the cold compared to the untreated control. Both groups of pCPA-treated and 5,7-DHT-treated animals maintained their Tre within normal limits. The data suggest that changes in 5-HT content in brain affects the MR of rabbits in the cold. Elevating brain content of 5-HT tends to depress the MR response to cold, while depleting brain content of 5-HT tends to enhance the MR response to cold.


Sign in / Sign up

Export Citation Format

Share Document