scholarly journals Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury

2017 ◽  
Vol 313 (2) ◽  
pp. F262-F272 ◽  
Author(s):  
Matthew David MacManes

Animals living in desert environments are forced to survive despite severe heat, intense solar radiation, and both acute and chronic dehydration. These animals have evolved phenotypes that effectively address these environmental stressors. To begin to understand the ways in which the desert-adapted rodent Peromyscus eremicus survives, reproductively mature adults were subjected to 72 h of water deprivation, during which they lost, on average, 23% of their body weight. The animals reacted via a series of changes in the kidney, which included modulating expression of genes responsible for reducing the rate of transcription and maintaining water and salt balance. Extracellular matrix turnover appeared to be decreased, and apoptosis was limited. In contrast to the canonical human response, serum creatinine and other biomarkers of kidney injury were not elevated, suggesting that changes in gene expression related to acute dehydration may effectively prohibit widespread kidney damage in the cactus mouse.

2017 ◽  
Author(s):  
MacManes Matthew

AbstractAnimal living in desert environments are forced to survive despite severe heat, intense solar radiation, and both acute and chronic dehydration. Indeed, these animals have evolved phenotypes that effectively address these environmental stressors. To begin to understand the ways in which the desert adapted rodent P. eremicus survives, we performed an experiment by which we subjected reproductively mature adults to profound acute dehydration, during which they lost on average 23% of their body weight. Animals react via a series of changes in the kidney, which include modulating expression of genes responsible for reducing the rate of transcription, and maintaining water and salt balance. Extracellular matrix turnover appears to be decreased, and apoptosis is limited. Serum Creatinine and other biomarkers of kidney injury are not elevated, which is different than the canonical human response, suggesting that transcriptional changes caused by acute dehydration effectively prohibit widespread kidney damage in the cactus mouse.


2007 ◽  
Vol 28 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Sebastiaan Wesseling ◽  
Jaap A. Joles ◽  
Harry van Goor ◽  
Hans A. Bluyssen ◽  
Patrick Kemmeren ◽  
...  

Nitric oxide (NO) depletion in rats induces severe endothelial dysfunction within 4 days. Subsequently, hypertension and renal injury develop, which are ameliorated by α-tocopherol (VitE) cotreatment. The hypothesis of the present study was that NO synthase (NOS) inhibition induces a renal cortical antioxidative transcriptional response and invokes pro-oxidative and proinflammatory gene expression due to elimination of dampening effects of NO and enhanced oxidative stress. Male Sprague-Dawley rats received NOS inhibitor Nω-nitro-l-arginine (l-NNA, 500 mg/l water) for 4 (4d-LNNA), 21 (21d-LNNA), or 21 days with VitE in chow (0.7 g/kg body wt/day). Renal cortical RNA was applied to oligonucleotide rat arrays. In 4d-LNNA, 21d-LNNA, and 21d-LNNA+VitE, 120, 320, and 184 genes were differentially expressed, respectively. Genes related to glutathione and bilirubin synthesis were suppressed during 4d and 21d-LNNA and not corrected by VitE. Proteinuria, tubulointerstitial macrophages, and heme-oxygenase-1 (HO-1) expression were strongly correlated. Remarkably, pro-oxidative genes were not induced. Inflammation- and injury-related genes, including kidney injury molecule-1 and osteopontin, were unchanged at day 4, induced at 21d, and partly corrected by VitE. Superimposing HO-1 inhibition on NOS inhibition had no impact on the development of hypertension. To summarize, renal expression of genes involved in synthesis of the antioxidants glutathione and bilirubin seemed directly NO dependent, but there were no direct effects of NO depletion on pro-oxidant systems. This indicates that renal transcriptional regulation of two defense systems, glutathione and bilirubin syntheses, seems to depend upon adequate NO synthesis. Interaction between NO synthesis and heme degradation pathways for blood pressure regulation was not found.


2013 ◽  
Vol 57 (9) ◽  
pp. 4470-4480 ◽  
Author(s):  
Min Jung Kwun ◽  
Gabriela Novotna ◽  
Andrew R. Hesketh ◽  
Lionel Hill ◽  
Hee-Jeon Hong

ABSTRACTVanRS two-component regulatory systems are key elements required for the transcriptional activation of inducible vancomycin resistance genes in bacteria, but the precise nature of the ligand signal that activates these systems has remained undefined. Using the resistance system inStreptomyces coelicoloras a model, we have undertaken a series ofin vivostudies which indicate that the VanS sensor kinase in VanB-type resistance systems is activated by vancomycin in complex with thed-alanyl-d-alanine (d-Ala-d-Ala) termini of cell wall peptidoglycan (PG) precursors. Complementation of an essentiald-Ala-d-Ala ligase activity by constitutive expression ofvanAencoding a bifunctionald-Ala-d-Ala andd-alanyl-d-lactate (d-Ala-d-Lac) ligase activity allowed construction of strains that synthesized variable amounts of PG precursors containingd-Ala-d-Ala. Assays quantifying the expression of genes under VanRS control showed that the response to vancomycin in these strains correlated with the abundance ofd-Ala-d-Ala-containing PG precursors; strains producing a lower proportion of PG precursors terminating ind-Ala-d-Ala consistently exhibited a lower response to vancomycin. Pretreatment of wild-type cells with vancomycin or teicoplanin to saturate and mask thed-Ala-d-Ala binding sites in nascent PG also blocked the transcriptional response to subsequent vancomycin exposure, and desleucyl vancomycin, a vancomycin analogue incapable of interacting withd-Ala-d-Ala residues, failed to inducevangene expression. Activation of resistance by a vancomycin–d-Ala-d-Ala PG complex predicts a limit to the proportion of PG that can be derived from precursors terminating ind-Ala-d-Lac, a restriction also enforced by the bifunctional activity of the VanA ligase.


2014 ◽  
Vol 306 (8) ◽  
pp. F864-F872 ◽  
Author(s):  
Zhi Zhao Liu ◽  
Kristin Schmerbach ◽  
Yuan Lu ◽  
Andrea Perlewitz ◽  
Tatiana Nikitina ◽  
...  

Iodinated contrast media (CM) have adverse effects that may result in contrast-induced acute kidney injury. Oxidative stress is believed to play a role in CM-induced kidney injury. We test the hypothesis that oxidative stress and reduced nitric oxide in tubules are consequences of CM-induced direct cell damage and that increased local oxidative stress may increase tubuloglomerular feedback. Rat thick ascending limbs (TAL) were isolated and perfused. Superoxide and nitric oxide were quantified using fluorescence techniques. Cell death rate was estimated using propidium iodide and trypan blue. The function of macula densa and tubuloglomerular feedback responsiveness were measured in isolated, perfused juxtaglomerular apparatuses (JGA) of rabbits. The expression of genes related to oxidative stress and the activity of superoxide dismutase (SOD) were investigated in the renal medulla of rats that received CM. CM increased superoxide concentration and reduced nitric oxide bioavailability in TAL. Propidium iodide fluorescence and trypan blue uptake increased more in CM-perfused TAL than in controls, indicating increased rate of cell death. There were no marked acute changes in the expression of genes related to oxidative stress in medullary segments of Henle's loop. SOD activity did not differ between CM and control groups. The tubuloglomerular feedback in isolated JGA was increased by CM. Tubular cell damage and accompanying oxidative stress in our model are consequences of CM-induced direct cell damage, which also modifies the tubulovascular interaction at the macula densa, and may therefore contribute to disturbances of renal perfusion and filtration.


2013 ◽  
Vol 45 (8) ◽  
pp. 321-331 ◽  
Author(s):  
Gretchen A. Meyer ◽  
Simon Schenk ◽  
Richard L. Lieber

In this work, the interaction between the loss of a primary component of the skeletal muscle cytoskeleton, desmin, and two common physiological stressors, acute mechanical injury and aging, were investigated at the transcriptional, protein, and whole muscle levels. The transcriptional response of desmin knockout ( des −/−) plantarflexors to a bout of 50 eccentric contractions (ECCs) showed substantial overlap with the response in wild-type ( wt) muscle. However, changes in the expression of genes involved in muscle response to injury were blunted in adult des −/− muscle compared with wt (fold change with ECC in des −/− and wt, respectively: Mybph, 1.4 and 2.9; Xirp1, 2.2 and 5.7; Csrp3, 1.8 and 4.3), similar to the observed blunted mechanical response (torque drop: des −/− 30.3% and wt 55.5%). Interestingly, in the absence of stressors, des −/− muscle exhibited elevated expression of many these genes compared with wt. The largest transcriptional changes were observed in the interaction between aging and the absence of desmin, including many genes related to slow fiber pathway (Myh7, Myl3, Atp2a2, and Casq2) and insulin sensitivity (Tlr4, Trib3, Pdk3, and Pdk4). Consistent with these transcriptional changes, adult des −/− muscle exhibited a significant fiber type shift from fast to slow isoforms of myosin heavy chain ( wt, 5.3% IIa and 71.7% IIb; des −/−, 8.4% IIa and 61.4% IIb) and a decreased insulin-stimulated glucose uptake ( wt, 0.188 μmol/g muscle/20 min; des −/−, 0.085 μmol/g muscle/20 min). This work points to novel areas of influence of this cytoskeletal protein and directs future work to elucidate its function.


2021 ◽  
Vol 7 ◽  
Author(s):  
Thomas Clavier ◽  
Zoé Demailly ◽  
Xavier Semaille ◽  
Caroline Thill ◽  
Jean Selim ◽  
...  

Introduction: Endoplasmic reticulum stress (ERS) is involved in inflammatory organ failure. Our objective was to describe ERS, its unfolded protein response (UPR) expression/kinetics during cardiac surgery with cardiopulmonary bypass (CPB) and its association with postoperative organ failure (OF).Methods: Prospective study conducted on patients undergoing cardiac surgery with CPB. Blood samples were taken before (Pre-CPB), 2 h (H2-CPB) and 24 h (H24-CPB) after CPB. Plasma levels of 78 kDa Glucose- Regulated Protein (GRP78, final effector of UPR) were evaluated by ELISA. The expression of genes coding for key elements of UPR (ATF6, ATF4, sXBP1, CHOP) was evaluated by quantitative PCR performed on total blood. OF was defined as invasive mechanical ventilation and/or acute kidney injury and/or hemodynamic failure requiring catecholamines.Results: We included 46 patients, GRP78 was decreased at H2-CPB [1,328 (878–1,730) ng/ml vs. 2,348 (1,655–3,730) ng/ml Pre-CPB; p < 0.001] but returned to basal levels at H24-CPB [2,068 (1,436–3,005) ng/ml]. The genes involved in UPR had increased expression at H2 and H24. GRP78 plasma levels in patients with OF at H24-CPB (n = 10) remained below Pre-CPB levels [−27.6 (−51.5; −24.2)%] compared to patients without OF (n = 36) in whom GRP78 levels returned to basal levels [0.6 (−28.1; 26.6)%; p < 0.01]. H24-CPB ATF6 and CHOP expressions were lower in patients with OF than in patients without OF [2.3 (1.3–3.1) vs. 3.0 (2.7–3.7), p < 0.05 and 1.3 (0.9–2.0) vs. 2.2 (1.7–2.9), p < 0.05, respectively].Conclusions: Low relative levels of GRP78 and weak UPR gene expression appeared associated with postoperative OF. Further studies are needed to understand ERS implication during acute organ failure in humans.


Author(s):  
Eran Mick ◽  
Jack Kamm ◽  
Angela Oliveira Pisco ◽  
Kalani Ratnasiri ◽  
Jennifer M Babik ◽  
...  

We studied the host transcriptional response to SARS-CoV-2 by performing metagenomic sequencing of upper airway samples in 238 patients with COVID-19, other viral or non-viral acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-19 was characterized by a diminished innate immune response, with reduced expression of genes involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 also exhibited significantly reduced proportions of neutrophils and macrophages, and increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using machine learning, we built 26-, 10- and 3-gene classifiers that differentiated COVID-19 from other acute respiratory illnesses with AUCs of 0.980, 0.950 and 0.871, respectively. Classifier performance was stable at low viral loads, suggesting utility in settings where direct detection of viral nucleic acid may be unsuccessful. Taken together, our results illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 diagnostics based on patient gene expression.


2018 ◽  
Author(s):  
Pietro E Cippà ◽  
Bo Sun ◽  
Jing Liu ◽  
Liang Chen ◽  
Maarten Naesens ◽  
...  

AbstractOur molecular understanding of clinical conditions progressing from acute organ injury to irreversible dysfunction is limited. We used renal transplantation as a model to characterize the transcriptional response along the transition from acute kidney injury to allograft fibrosis in humans. The integrated analysis of 163 transcriptomes with machine learning techniques identified shared and divergent transcriptional trajectories determining distinct clinical outcomes in a heterogeneous population. The molecular map of renal responses to injury was validated in a mouse ischemia-reperfusion injury model and highlighted early markers of disease progression. This generally applicable approach opens the way for an unbiased analysis of progressive diseases.


2017 ◽  
Author(s):  
Daphne Ezer ◽  
Samuel JK Shepherd ◽  
Anna Brestovitsky ◽  
Patrick Dickinson ◽  
Sandra Cortijo ◽  
...  

ABSTRACTPlants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes—these expansions are linked to adaptation to environmental stressors (1, 2). Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determine that the flanking sequences near G-boxes help determine in vitro specificity, but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we construct a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the gene expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a website that provides interactive visualisations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations.


2005 ◽  
Vol 49 (5) ◽  
pp. 1915-1926 ◽  
Author(s):  
Janine T. Lin ◽  
Mariah Bindel Connelly ◽  
Chris Amolo ◽  
Suzie Otani ◽  
Debbie S. Yaver

ABSTRACT Global gene expression patterns of Bacillus subtilis in response to subinhibitory concentrations of protein synthesis inhibitors (chloramphenicol, erythromycin, and gentamicin) were studied by DNA microarray analysis. B. subtilis cultures were treated with subinhibitory concentrations of protein synthesis inhibitors for 5, 15, 30, and 60 min, and transcriptional patterns were measured throughout the time course. Three major classes of genes were affected by the protein synthesis inhibitors: genes encoding transport/binding proteins, genes involved in protein synthesis, and genes involved in the metabolism of carbohydrates and related molecules. Similar expression patterns for a few classes of genes were observed due to treatment with chloramphenicol (0.4× MIC) or erythromycin (0.5× MIC), whereas expression patterns of gentamicin-treated cells were distinct. Expression of genes involved in metabolism of amino acids was altered by treatment with chloramphenicol and erythromycin but not by treatment with gentamicin. Heat shock genes were induced by gentamicin but repressed by chloramphenicol. Other genes induced by the protein synthesis inhibitors included the yheIH operon encoding ABC transporter-like proteins, with similarity to multidrug efflux proteins, and the ysbAB operon encoding homologs of LrgAB that function to inhibit cell wall cleavage (murein hydrolase activity) and convey penicillin tolerance in Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document