scholarly journals MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells

2008 ◽  
Vol 295 (3) ◽  
pp. F749-F757 ◽  
Author(s):  
Jehyun Park ◽  
Dong-Ryeol Ryu ◽  
Jin Ji Li ◽  
Dong-Sub Jung ◽  
Seung-Jae Kwak ◽  
...  

Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that plays an important role in the recruitment of macrophages. Although previous studies have demonstrated the importance of MCP-1 in the pathogenesis of diabetic nephropathy (DN) in terms of inflammation, the role of MCP-1 and its receptor (C-C chemokine receptor 2; CCR2) in extracellular matrix (ECM) accumulation under diabetic conditions has been largely unexplored. This study was undertaken to investigate the functional role of the MCP-1/CCR2 system in high glucose-induced ECM (fibronectin and type IV collagen) protein expression in cultured mesangial cells (MCs). Mouse MCs were exposed to medium containing 5.6 mM glucose (NG), NG+24.4 mM mannitol (NG+M), or 30 mM glucose (HG) with or without mutant MCP-1 (mMCP-1), CCR2 small interfering (si)RNA, or CCR2 inhibitor (RS102895). To examine the relationship between MCP-1 and transforming growth factor (TGF)-β1, MCs were also treated with TGF-β1 (2 ng/ml) with or without mMCP-1 or CCR2 siRNA. Transient transfection was performed with Lipofectamine 2000 for 24 h. Cell viability was determined by an MTT assay, mouse and human MCP-1 and TGF-β1 levels by ELISA, and CCR2 and ECM protein expression by Western blotting. Transfections of mMCP-1 and CCR2 siRNA increased human MCP-1 levels and inhibited CCR2 expression, respectively. HG-induced ECM protein expression and TGF-β1 levels were significantly attenuated by mMCP-1, CCR2 siRNA, and RS102895 ( P < 0.05). MCP-1 directly increased ECM protein expression, and this increase was inhibited by an anti-TGF-β1 antibody. In addition, TGF-β1-induced ECM protein expression was significantly abrogated by the inhibition of the MCP-1/CCR2 system ( P < 0.05). These results suggest that an interaction between the MCP-1/CCR2 system and TGF-β1 may contribute to ECM accumulation in DN.

2001 ◽  
Vol 280 (4) ◽  
pp. F667-F674 ◽  
Author(s):  
Chhinder P. Sodhi ◽  
Sarojini A. Phadke ◽  
Daniel Batlle ◽  
Atul Sahai

The effect of hypoxia on the proliferation and collagen synthesis of cultured rat mesangial cells was examined under normal-glucose (NG, 5 mM) and high-glucose (HG, 25 mM)-media conditions. In addition, a role for osteopontin (OPN) in mediating these processes was assessed. Quiescent cultures were exposed to hypoxia (3% O2) and normoxia (18% O2) in a serum-free medium with NG or HG, and cell proliferation, collagen synthesis, and OPN expression were assessed. Cells exposed to hypoxia in NG medium resulted in significant increases in [3H]thymidine incorporation, cell number, and [3H]proline incorporation, respectively. HG incubations also produced significant stimulation of these parameters under normoxic conditions, which were markedly enhanced in cells exposed to hypoxia in HG medium. In addition, hypoxia and HG stimulated the mRNA levels of type IV collagen, and the combination of hypoxia and HG resulted in additive increases in type IV collagen expression. Hypoxia and HG also stimulated OPN mRNA and protein levels in an additive fashion. A neutralizing antibody to OPN or its β3-integrin receptor significantly blocked the effect of hypoxia and HG on proliferation and collagen synthesis. In conclusion, these results demonstrate for the first time that hypoxia in HG medium produces exaggerated mesangial cell growth and type IV collagen synthesis. In addition, OPN appears to play a role in mediating the accelerated mesangial cell growth and collagen synthesis found in a hyperglycemic and hypoxic environment.


2009 ◽  
Vol 88 (8) ◽  
pp. 757-761 ◽  
Author(s):  
K. Jinno ◽  
T. Takahashi ◽  
K. Tsuchida ◽  
E. Tanaka ◽  
K. Moriyama

Wound healing is a well-orchestrated complex process leading to the repair of injured tissues. It is suggested that transforming growth factor (TGF)-β/Smad3 signaling is involved in wound healing. The purpose of this study was to investigate the role of TGF-β/Smad3 signaling in palatal wound healing in Smad3-deficient (Smad3−/−) mice. Histological examination showed that wound closure was accelerated by the proliferation of epithelium and dermal cells in Smad3−/− mice compared with wild-type (WT) mice. Macrophage/monocyte infiltration at wounded regions in Smad3−/− mice was decreased in parallel with the diminished production of TGF-β1, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α compared with WT mice. Fibrocytes, expressing hematopoietic surface marker and fibroblast products, were recruited and produced α-smooth-muscle actin in WT mice, but were not observed in Smad3−/− mice. These results suggest that TGF-β/Smad3 signaling may play an important role in the regulation of palatal wound healing.


2010 ◽  
Vol 298 (5) ◽  
pp. F1263-F1275 ◽  
Author(s):  
Yu Jin Lee ◽  
Ho Jae Han

Peroxisome proliferator-activated receptor-γ (PPARγ) agonists ameliorate renal fibrotic lesions in diabetic nephropathy. However, the effects of the agonists on the epithelial-mesenchymal transition (EMT) linked to membrane transport dysfunction are unknown. The present study aimed to verify the effects of the PPARγ agonist troglitazone on high glucose (HG)-induced EMT in primary cultured renal proximal tubular epithelial cells (PTCs). HG (25 mM) as well as hydrogen peroxide (H2O2) and transforming growth factor-β1 (TGF-β1) decreased expression of epithelial cell marker E-cadherin and increased the expression of the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA). HG, H2O2, and TGF-β1 decreased Na+/H+ exchangers (NHEs) or Na+-glucose cotransporters (SGLTs) and glucose uptake, showing membrane transport dysfunction. HG stimulated the production of cellular reactive oxygen species (ROS), and antioxidants blocked the HG-induced increase in phosphatidylinositol 3-kinase (PI3K)/Akt activation. Antioxidants and inhibitors of PI3K/Akt reversed HG-induced EMT protein expression. Inhibition of PI3K/Akt also blocked HG-induced glycogen synthase kinase-3β (GSK-3β) phosphorylation. HG and lithium chloride (GSK-3β inhibitor) blocked Snail1 and β-catenin activation. Moreover, transfection with Snail1 or β-catenin small interfering RNA (siRNA) reversed HG-induced EMT protein expression. Importantly, HG decreased PPARγ activation and troglitazone reversed HG-induced expression of PI3K/Akt, GSK-3β, Snail1, and β-catenin as well as EMT proteins. Finally, inhibitors of PI3K/Akt, Snail1/β-catenin siRNA, and troglitazone blocking the HG-induced EMT restored glucose uptake in PTCs. In conclusion, HG induces EMT through ROS, PI3K/Akt, GSK-3β, Snail, and β-catenin. Subsequently, HG-induced EMT may result in SGLT dysfunction that is restored by the PPARγ agonist troglitazone in primary cultured PTCs.


2017 ◽  
Vol 131 (5) ◽  
pp. 411-423 ◽  
Author(s):  
Bo Wang ◽  
Kevin Yao ◽  
Andrea F. Wise ◽  
Ricky Lau ◽  
Hsin-Hui Shen ◽  
...  

The regulatory role of a novel miRNA, miR-378, was determined in the development of fibrosis through repression of the MAPK1 pathway, miR-378 and fibrotic gene expression was examined in streptozotocin (STZ)-induced diabetic mice at 18 weeks or in unilateral ureteral obstruction (UUO) mice at 7 days. miR-378 transfection of proximal tubular epithelial cells, NRK52E and mesangial cells was assessed with/without endogenous miR-378 knockdown using the locked nucleic acid (LNA) inhibitor. NRK52E cells were co-transfected with the mothers against decapentaplegic homolog 3 (SMAD3) CAGA reporter and miR-378 in the presence of transforming growth factor-β (TGF-β1) was assessed. Quantitative polymerase chain reaction (qPCR) showed a significant reduction in miR-378 (P<0.05) corresponding with up-regulated type I collagen, type IV collagen and α-smooth muscle actin (SMA) in kidneys of STZ or UUO mice, compared with controls. TGF-β1 significantly increased mRNA expression of type I collagen (P<0.05), type IV collagen (P<0.05) and α-SMA (P<0.05) in NRK52E cells, which was significantly reduced (P<0.05) following miR-378 transfection and reversed following addition of the LNA inhibitor of endogenous miR-378. Overexpression of miR-378 inhibited mesangial cell expansion and proliferation in response to TGF-β1, with LNA–miR-378 transfection reversing this protective effect, associated with cell morphological alterations. The protective function of MAPK1 on miR-378 was shown in kidney cells treated with the MAPK1 inhibitor, selumetinib, which inhibited mesangial cell hypertrophy in response to TGF-β1. Taken together, these results suggest that miR-378 acts via regulation of the MAPK1 pathway. These studies demonstrate the protective function of MAPK1, regulated by miR-378, in the induction of kidney cell fibrosis and mesangial hypertrophy.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xueqin Zhou ◽  
Chenlin Gao ◽  
Wei Huang ◽  
Maojun Yang ◽  
Guo Chen ◽  
...  

Recent studies have shown that sumoylation is a posttranslational modification involved in regulation of the transforming growth factor-β(TGF-β) signaling pathway, which plays a critical role in renal fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of TGF-βsignaling in DN is still unclear. In the present study, we investigated the expression of SUMO (SUMO1 and SUMO2/3) and Smad4 and the interaction between SUMO and Smad4 in cultured rat mesangial cells induced by high glucose. We found that SUMO1 and SUMO2/3 expression was significantly increased in the high glucose groups compared to the normal groupP<0.05. Smad4 and fibronectin (FN) levels were also increased in the high glucose groups in a dose-dependent manner. Coimmunoprecipitation and confocal laser scanning revealed that Smad4 interacted and colocalized with SUMO2/3, but not with SUMO1 in mesangial cells. Sumoylation (SUMO2/3) of Smad4 under high glucose condition was strongly enhanced compared to normal controlP<0.05. These results suggest that high glucose may activate TGF-β/Smad signaling through sumoylation of Samd4 by SUMO2/3 in mesangial cells.


2001 ◽  
Vol 12 (4) ◽  
pp. 703-712 ◽  
Author(s):  
NATALIA YEVDOKIMOVA ◽  
NADIA ABDEL WAHAB ◽  
ROGER M. MASON

Abstract. Elevated levels of transforming growth factor-β1 (TGF-β1) are synthesized by human mesangial cells that are cultured in medium that contains high concentrations of glucose and mediate increased synthesis of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), and changes in the expression of other genes. TGF-β1 is synthesized as a latent complex. Previous work indicated that high-glucose conditions also upregulate expression of thrombospondin-1 (TSP-1), a potential activator of latent TGF-β1. With the use of the synthetic peptide GGWSHW, an inhibitor of the TSP-1 activation mechanism, endogenous TSP-1 is shown to be responsible for converting high levels of latent TGF-β1 to bioactive growth factor over 3 wk of exposure of mesangial cells to 30 mM D-glucose. Peptide inhibition of TGF-β1 activation by TSP-1 in high-glucose conditions completely suppressed increases in FN and PAI-1 expression. Treating mesangial cells maintained in high glucose with a TSP-1 antisense oligonucleotide reduced TSP-1 expression to levels found in 4 mM D-glucose cultures, prevented TGF-β1 activation, and normalized expression of FN.


Sign in / Sign up

Export Citation Format

Share Document