Magnesium homeostasis during high-intensity anaerobic exercise in men

1987 ◽  
Vol 62 (2) ◽  
pp. 545-550 ◽  
Author(s):  
P. A. Deuster ◽  
E. Dolev ◽  
S. B. Kyle ◽  
R. A. Anderson ◽  
E. B. Schoomaker

This study was conducted to determine whether short-term, high-intensity anaerobic exercise alters Mg homeostasis. Thirteen men performed intermittent bouts of treadmill running at 90% of their predetermined maximum O2 uptake until exhaustion on one occasion during a week in which all men were consuming a standard diet (115 mg Mg/1,000 kcal). Plasma and erythrocyte Mg concentrations and peripheral blood mononuclear cell Mg content were measured before and after the exercise. Complete 24-h urine collections were obtained on control days, on the day of exercise, and on the day after exercise. Exercise induced a transient but significant decrease in plasma Mg content (-6.8%; P less than 0.01); over 85% of the loss could be accounted for by a shift to the erythrocytes. Significant increases in urinary excretion of Mg were observed on the day of exercise (131.5 +/- 6.8 mg/day) compared with control days (108 +/- 6.6 mg/day), with the percent increase correlating with postexercise blood lactate concentration (r = 0.68; P less than 0.01) and oxygen consumption during recovery (r = 0.84; P less than 0.001). The data indicate that high-intensity anaerobic exercise induces intercompartmental Mg shifts in blood that return to preexercise values within 2 h and urinary losses on the day of exercise that return to base line the day after exercise. It is postulated that the exercise-induced increase in Mg excretion may depend on the intensity of the exercise, and the relative contribution of anaerobic metabolism to the total energy expended during exercise.

1981 ◽  
Vol 51 (4) ◽  
pp. 840-844 ◽  
Author(s):  
B. A. Stamford ◽  
A. Weltman ◽  
R. Moffatt ◽  
S. Sady

The purpose of this study was to determine the effects of resting and exercise recovery above [70% of maximum O2 uptake (VO2 max)] and below [40% of VO2 max] anaerobic threshold (AT) on blood lactate disappearance following maximal exercise. Blood lactate concentrations at rest (0.9 mM) and during exercise at 40% (1.3 mM) and 70% (3.5 mM) of VO2 max without preceding maximal exercise were determined on separate occasions and represented base lines for each condition. The rate of blood lactate disappearance from peak values was ascertained from single-component exponential curves fit for each individual subject for each condition using both the determined and resting base lines. When determined base lines were utilized, there were no significant differences in curve parameters between the 40 and 70% of VO2 max recoveries, and both were significantly different from the resting recovery. When a resting base line (0.9 mM) was utilized for all conditions, 40% of VO2 max demonstrated a significantly faster half time than either 70% of VO2 max or resting recovery. No differences were found between 70% of VO2 max and resting recovery. It was concluded that interpretation of the effectiveness of exercise recovery above and below AT with respect to blood lactate disappearance is influenced by the base-line blood lactate concentration utilized in the calculation of exponential half times.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonghyuk Park ◽  
Jimmy Kim ◽  
Toshio Mikami

Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.


2020 ◽  
Vol 6 (1) ◽  
pp. e000815
Author(s):  
Mette Engan ◽  
Ida Jansrud Hammer ◽  
Trine Stensrud ◽  
Hilde Gundersen ◽  
Elisabeth Edvardsen ◽  
...  

ObjectiveTo evaluate changes in pulmonary function and feasibility of portable continuous laryngoscopy during maximal uphill running.MethodsHealthy volunteers participated in an uphill race. Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were obtained before and 5 and 10 min after finishing the race. Capillary blood lactate concentration ([BLa-]) and Borg score for perceived exertion were registered immediately after the race. One participant wore a portable video-laryngoscope during the race, and the video was assessed for technical performance.ResultsTwenty adult subjects participated with a mean (SD) age of 40.2 (9.7) years. Mean (SD) race duration and post-exercise [BLa-] was 13.9 (2.3) min and 10.7 (2.1) mmol/L, respectively, and the median (range) Borg score for perceived exertion was 9 (5–10). Mean percentage change (95% CI) 5 and 10 min post-exercise in FEV1 were 6.9 (3.7 to 10.2) % and 5.9 (2.7 to 9.0) %, respectively, and in FVC 5.2 (2.3 to 8.1) % and 4.7 (1.6 to 7.9) %, respectively. The recorded video of the larynx was of good quality.ConclusionsMaximal aerobic field exercise induced bronchodilatation in the majority of the healthy non-asthmatic participants. It is feasible to perform continuous video-laryngoscopy during heavy uphill exercise.


Author(s):  
Zivile Pranskuniene ◽  
Egle Belousoviene ◽  
Neringa Baranauskiene ◽  
Nerijus Eimantas ◽  
Egle Vaitkaitiene ◽  
...  

The natural components of the pomegranate fruit may provide additional benefits for endothelial function and microcirculation. It was hypothesized that supplementation with pomegranate extract might improve glycocalyx properties and microcirculation during acute high-intensity sprint interval cycling exercise. Eighteen healthy and recreationally active male volunteers 22–28 years of age were recruited randomly to the experimental and control groups. The experimental group was supplemented with pomegranate extract 20 mL (720 mg phenolic compounds) for two weeks. At the beginning and end of the study, the participants completed a high-intensity sprint interval cycling-exercise protocol. The microcirculation flow and density parameters, glycocalyx markers, systemic hemodynamics, lactate, and glucose concentration were evaluated before and after the initial and repeated (after 2 weeks supplementation) exercise bouts. There were no significant differences in the microcirculation or glycocalyx over the course of the study (p < 0.05). The lactate concentration was significantly higher in both groups after the initial and repeated exercise bouts, and were significantly higher in the experimental group compared to the control group after the repeated bout: 13.2 (11.9–14.8) vs. 10.3 (9.3–12.7) mmol/L, p = 0.017. Two weeks of supplementation with pomegranate extract does not influence changes in the microcirculation and glycocalyx during acute high-intensity sprint interval cycling-exercise. Although an unexplained rise in blood lactate concentration was observed.


2011 ◽  
Vol 300 (2) ◽  
pp. E341-E349 ◽  
Author(s):  
Miki Tadaishi ◽  
Shinji Miura ◽  
Yuko Kai ◽  
Emi Kawasaki ◽  
Keiichi Koshinaka ◽  
...  

There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10–30 m/min for 30 min). Preinjection of β2-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β2-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β2-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.


1993 ◽  
Vol 3 (2) ◽  
pp. 165-176 ◽  
Author(s):  
Mikael Fogelholm ◽  
Inkeri Ruokonen ◽  
Juha T. Laakso ◽  
Timo Vuorimaa ◽  
Jaakko-Juhani Himberg

By means of a 5-week vitamin B-complex .supplementation, associations between indices of vitamin B1, B2, and B6, status (activation coefficients [AC] for erythrocyte transketolase, glutathione reductase, and aspartate aminotransferase) and exercise-induced blood lactate concentration were studied. Subjects, 42 physically active college students (18–32 yrs), were randomized into vitamin (n=22) and placebo (n=20) groups. Before the supplementation there were no differences in ACs or basal enzyme activities between the groups. The ACs were relatively high, suggesting marginal vitamin status. In the vitamin group, all three ACs were lower (p<0.0001) after supplementation: transketolase decreased from l. 16 (1.14–1.18) (mean and 95% confidence interval) to 1.08 (1.06–1.10); glutathione reductase decreased from 1.33 (1.28–1.39) to 1 .I4 (1.1 1–1.17); and aspartate aminotransferase decreased from 2.04 (1.94–2.14) to 1.73 (1.67–1.80). No changes were found after placebo. Despite improved indices of vitamin status, supplementation did not affect exercise-induced blood lactate concentration. Hence no association was found between ACs and blood lactate. It seems that marginally high ACs do not necessarily predict altered lactate metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiago Cetolin ◽  
Anderson Santiago Teixeira ◽  
Juliano Fernandes da Silva ◽  
Alessandro Haupenthal ◽  
Fábio Yuzo Nakamura ◽  
...  

This study aimed to examine the acute physiological effect of shuttle-run-based high-intensity intermittent exercise (HIIE) performed at the same relative speed (i. e., 100% PST−CAR) on sand (SAND) and grass (GRASS) in male junior soccer players. Seven Under-23 Brazilian national league (“Série A”) soccer players completed four testing sessions in either SAND or GRASS surface condition. The first two testing sessions consisted of performing a maximal progressive shuttle-run field protocol until volitional exhaustion (Carminatti's test, T-CAR), whereas the third and fourth sessions comprised a HIIE session on each ground surface. The HIIE session consisted of three 5-min bouts [12 s shuttle-run (with a direction change every 6 s)/12 s of passive rest] performed at 100% of T-CAR peak speed (PST−CAR) with 3 min of passive recovery between sets. Measurements of oxygen uptake (VO2), heart rate (HR), blood lactate concentration ([La]), and rating of perceived exertion (RPE) were performed during all conditions. The SAND condition elicited significantly higher %VO2peak (94.58 ± 2.73 vs. 87.45 ± 3.31%, p &lt; 0.001, d = 2.35), %HRpeak (93.89 ± 2.63 vs. 90.31 ± 2.87%, p &lt; 0.001, d = 1.30), RPE (8.00 ± 0.91 vs. 4.95 ± 1.23 a.u., p &lt; 0.001, d = 2.82), and [La] (10.76 ± 2.37 vs. 5.48 ± 1.13 mmol/L, p &lt; 0.010, d = 2.84). This study showed that higher internal workloads are experienced by the players during a single HIIE session performed on a softer surface as SAND, even when the exercise intensity was individualized based on 100%PST−CAR.


1994 ◽  
Vol 76 (2) ◽  
pp. 846-852 ◽  
Author(s):  
C. Duan ◽  
W. W. Winder

Endurance training attenuates exercise-induced increases in blood lactate at the same submaximal work rate. Three intramuscular compounds that influence muscle lactate production were measured in fasted non-trained (NT) and endurance-trained (T) rats. The T rats were subjected to a progressive endurance-training program. At the end of the program (11 wk), they were running 2 h/day at 31 m/min up a 15% grade 5 days/wk. NT and T rats were fasted for 24 h and then anesthetized (pentobarbital, iv) at rest or after running for 30 min at 21 m/min (15% grade). Blood lactate levels were significantly lower in the T rats than in the NT rats after 30 min of running (2.3 +/- 0.2 vs. 3.9 +/- 0.2 mM). The lower blood lactate concentration was accompanied by lower plasma epinephrine (2.8 +/- 0.4 vs. 6.0 +/- 0.8 nM), adenosine 3′, 3′,5′-cyclic monophosphate (0.36 +/- 0.02 vs. 0.50 +/- 0.03 pmol/mg), mg), glucose 1,6-diphosphate (26 +/- 2 vs. 40 +/- 5 pmol/mg), and fructose 2,6-diphosphate (3.2 +/- 0.2 vs. 4.3 +/- 0.3 pmol/mg) in white quadriceps muscle in T than in NT rats. Red quadriceps muscle glucose 1,6-diphosphate and adenosine 3′,5′-cyclic monophosphate were also lower in T than in NT rats. These adaptations may be responsible in part for the lower exercise-induced blood lactate in fasted rats as a consequence of endurance training.


2000 ◽  
Vol 89 (5) ◽  
pp. 1744-1752 ◽  
Author(s):  
Helen Carter ◽  
Andrew M. Jones ◽  
Thomas J. Barstow ◽  
Mark Burnley ◽  
Craig Williams ◽  
...  

The purpose of this study was to examine the effect of endurance training on oxygen uptake (V˙o 2) kinetics during moderate [below the lactate threshold (LT)] and heavy (above LT) treadmill running. Twenty-three healthy physical education students undertook 6 wk of endurance training that involved continuous and interval running training 3–5 days per week for 20–30 min per session. Before and after the training program, the subjects performed an incremental treadmill test to exhaustion for determination of the LT and the V˙o 2 max and a series of 6-min square-wave transitions from rest to running speeds calculated to require 80% of the LT and 50% of the difference between LT and maximal V˙o 2. The training program caused small (3–4%) but significant increases in LT and maximalV˙o 2 ( P < 0.05). TheV˙o 2 kinetics for moderate exercise were not significantly affected by training. For heavy exercise, the time constant and amplitude of the fast component were not significantly affected by training, but the amplitude of theV˙o 2 slow component was significantly reduced from 321 ± 32 to 217 ± 23 ml/min ( P< 0.05). The reduction in the slow component was not significantly correlated to the reduction in blood lactate concentration ( r = 0.39). Although the reduction in the slow component was significantly related to the reduction in minute ventilation ( r = 0.46; P < 0.05), it was calculated that only 9–14% of the slow component could be attributed to the change in minute ventilation. We conclude that theV˙o 2 slow component during treadmill running can be attenuated with a short-term program of endurance running training.


Sign in / Sign up

Export Citation Format

Share Document