Variability of responses across training levels to maximal treadmill exercise

1989 ◽  
Vol 67 (1) ◽  
pp. 160-165 ◽  
Author(s):  
S. B. Kyle ◽  
B. L. Smoak ◽  
L. W. Douglass ◽  
P. A. Deuster

The variability of peak VO2 (ml/min, ml.kg-1.min-1), time on treadmill (TMILLTM), maximal heart rate (HRmax), respiratory exchange ratio at peak VO2 (Rmax), rate of respiration at peak VO2 (FREQ), and exercise-induced changes in plasma lactate concentration (LACDIF) was measured across three maximal treadmill runs in five highly trained, seven moderately trained, and five untrained males. No effect of training level on the variability of any of the parameters was found. Test-retest correlation coefficients for peak VO2 (r = 0.95, run 1 with run 2; r = 0.92, run 1 with run 3; r = 0.92, run 2 with run 3) were similar to previously reported values. Variance component distributions suggested that the underlying physiological mechanisms of response for peak VO2, TMILLTM, and HRmax were different from those of FREQ, Rmax, and LACDIF. Minimum detectable differences for peak VO2 (ml.kg-1.min-1, n = 5, minimum detectable within subject difference, 11.5%; minimum detectable among subject effects, 21.3%) indicated a need for careful attention to research design in future studies.

1980 ◽  
Vol 48 (6) ◽  
pp. 1060-1064 ◽  
Author(s):  
R. M. Glaser ◽  
M. N. Sawka ◽  
M. F. Brune ◽  
S. W. Wilde

The purpose of this investigation was to compare physical work capacity (PWC), peak oxygen uptake (peak VO2), maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), and maximal blood lactate concentration (LAmax) for wheelchair ergometer (WERG) and arm crank ergometer (ACE) exercise. For this, wheelchair-dependent (n = 6) and able-bodied (n = 10) subjects completed a progressive intensity, discontinuous test for each mode of exercise. Each test was terminated by physical exhaustion and/or an inability to maintain a flywheel velocity of 180 m.min-1. Relatively high correlation coefficients were found between values obtained during the two modes of ergometry for PWC, peak VO2, VEmax, and HRmax. WERG exercise was found to elicit a significantly (P less than 0.05) lower PWC (by 36%), HRmax (by 7%), and LAmax (by 26%) than ACE exercise. Peak VO2 and VEmax, however, were similar for both exercise modes. These data suggest that either exercise mode may be used for fitness testing and training of people who cannot use their legs and that arm cranking may be a superior method to propel wheelchairs.


1979 ◽  
Vol 56 (2) ◽  
pp. 139-146 ◽  
Author(s):  
W. J. Ryan ◽  
J. R. Sutton ◽  
C. J. Toews ◽  
N. L. Jones

1. The ability to metabolize lactate at rest and during exercise was studied in six male subjects by using a constant infusion of sodium l(+)-lactate at a rate of 0·05 mmol min−1 kg−1. Twenty minute periods of rest and exercise at two work rates were used, amounting to 25% and 50% of maximal O2 uptake (V̇o2 max.) in four subjects and 50% and 66% of V̇o2 max. in two subjects. Control measurements were made with saline infusion. In all studies a steady state in blood lactate was achieved. 2. At rest lactate infusion was associated with an increase of 3·51 mmol/l (± sd 0·70) in plasma lactate. The increase was smaller in exercise and in a given subject was the same at both work rates; plasma lactate was on average 1·21 mmol/l (±sd 1·11) higher during lactate infusion than the control measurement at the same power output. In one subject lactate values in exercise were unchanged by lactate infusion. 3. At rest lactate infusion was associated with an increase in O2 intake and CO2 output, the respiratory exchange ratio was unchanged, and plasma HCO−3 rose by 1·85 mmol/l. 4. During exercise lactate infusion was associated with a smaller and variable increase in O2 intake. CO2 output was less, the respiratory exchange ratio fell, and plasma HCO−3 rose by 6·1 mmol/l. 5. Exercise is accompanied by an increased capacity to metabolize lactate aerobically. Decreasing lactate metabolism appears to play no part in the increase in plasma lactate concentration with increasing exercise, at least to 66% of the maximal O2 intake.


2020 ◽  
Vol 16 (4) ◽  
pp. 253-258
Author(s):  
Y. Kitaoka ◽  
K. Mukai ◽  
K. Takahashi ◽  
H. Ohmura ◽  
H. Hatta

The aim of this study was to examine the effects of lactate administration on the mRNA response of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) to acute exercise in Thoroughbred skeletal muscle. Five Thoroughbred horses performed treadmill running at 90% of maximal oxygen consumption for 2 min on two separate occasions, either after the administration of two litres of a sodium lactate solution (LAC; 500 mmol/l sodium lactate in 0.9% NaCl) or a saline solution as a control (CON; 0.9% NaCl). Lactate administration significantly elevated the peak plasma lactate concentration during exercise (16.0±2.8 mmol/l in LAC vs 10.8±2.2 mmol/l in CON). The increase in PGC-1α mRNA expression after 4 h of recovery from exercise was similar between treatments. However, there was positive correlation between exercise-induced PGC-1α mRNA response at 4 h after exercise and peak plasma lactate concentration during exercise. These results suggest that the exercise intensity-dependent adaptation of PGC-1α may be attributed, at least in part, to an increased lactate concentration.


1989 ◽  
Vol 257 (1) ◽  
pp. R102-R108 ◽  
Author(s):  
R. S. McKelvie ◽  
M. I. Lindinger ◽  
G. J. Heigenhauser ◽  
J. R. Sutton ◽  
N. L. Jones

Five healthy males performed four 30-s bouts of maximal exercise, separated by 4 min of rest, on an isokinetic cycle ergometer. Arterial blood and urine samples were taken from indwelling catheters at rest, immediately postexercise, and for 90 min of recovery. Inulin was continuously infused to measure glomerular filtration rate (GFR). Arterial plasma [Na+], [K+], and [Cl-] increased (P less than 0.05) with exercise; plasma lactate concentration ([Lac-]) increased from 1.3 +/- 0.2 to 21.0 +/- 1.0 (SE) meq/l (P less than 0.05). A significant decrease in the GFR occurred after exercise and during recovery associated with reductions in renal Na+ and K+ excretion (P less than 0.05). Renal excretion of Lac- reached a maximum of 293 +/- 79.4 mu eq.kg-1.h-1 (P less than 0.05), with Cl- excretion reaching a minimum of 4.8 +/- 0.95 mu eq.kg-1.h-1 (P less than 0.05). Urine [Lac-] was 189 +/- 25.6 meq/l, and urine [Cl-] was 6 +/- 1.7 meq/l at 30 min of recovery. There was a curvilinear relationship between urine [Cl-] and [Lac-] (r = -0.86; P less than 0.0001). Net Lac- production was estimated from arterial [Lac-] and after assuming a distribution volume. Less than 2% (13.1 meq) of the total estimated Lac- produced (678 meq) was excreted in the urine. Decreases in urine [Cl-] act to limit the fall in urine pH that accompanies increases in urine [Lac-].


2003 ◽  
Vol 81 (7) ◽  
pp. 696-703 ◽  
Author(s):  
Larry A Wolfe ◽  
Aaron P Heenan ◽  
Arend Bonen

This study was conducted to test the hypothesis that aerobic conditioning prevents exercise-induced hypoglycemia and preserves the capacity to utilize carbohydrates and to produce lactate during heavy exercise in late gestation. The effects of closely monitored cycle ergometer conditioning (heart rate = 143 ± 2 beats/min, 25 min/day, 3 days/week) during the second and third trimesters were studied in 18 previously sedentary women (exercised group, EG). A nonexercising pregnant control group (CG, n = 9) was also studied. Data collection times for both groups were as follows: start of the second trimester (Entry), ends of the second (TM2) and third (TM3) trimesters (post-training), and 4–6 months postpartum (nonpregnant control). Respiratory gas exchange was studied and venous blood samples were obtained before, during, and after a graded cycle ergometer test that was terminated at a peak heart rate of 170 beats/min. Measurements included plasma glucose, insulin, free fatty acids, the respiratory exchange ratio at peak exercise, and peak postexercise lactate concentration. A significant aerobic conditioning effect in the EG was confirmed by a 17% increase in O2 pulse at peak exercise between Entry and TM3. As expected, values for free fatty acids in the CG rose with advancing gestational age. The CG showed a clear trend for a rise in plasma insulin with advancing gestational age, under all experimental conditions. Also, peak exercise respiratory exchange ratio and peak postexercise lactate concentration were significantly reduced in late gestation, and plasma glucose decreased significantly during and following the end of TM3 testing. Effects of pregnancy to reduce peak postexercise lactate and to reduce plasma glucose during and after exercise at the end of the third trimester were significantly attenuated in the EG. These effects were attributed to attenuation of pregnancy-induced insulin resistance (as reflected by insulin/glucose ratio) by physical conditioning. These findings support our original experimental hypothesis that aerobic conditioning prevents exercise-induced hypoglycemia and preserves the ability to utilize carbohydrate and produce lactate during heavy exercise in late gestation.Key words: exercise testing, human gestation, carbohydrate metabolism, postexercise hypoglycemia, blood lactate accumulation.


2020 ◽  
Vol 60 (2) ◽  
pp. 252-262
Author(s):  
Benhammou Saddek ◽  
Jérémy B.J. Coquart ◽  
Laurent Mourot ◽  
Belkadi Adel ◽  
Mokkedes Moulay Idriss ◽  
...  

SummaryThe aims of this study were (a): to compare maximal physiological responses (maximal heart rate: HRmax and blood lactate concentration: [La-]) and maximal aerobic speed (MAS) achieved during a gold standard test (T-VAM) to those during a new test entitled: the 150-50 Intermittent Test (150-50IT), and (b): to test the reliability of the 150-50IT. Eighteen middle-distance runners performed, in a random order, the T-VAM and the 150-50IT. Moreover, the runners performed a second 150-50IT (retest). The results of this study showed that the MAS obtained during 150-50IT were significantly higher than the MAS during the T-VAM (19.1 ± 0.9 vs. 17.9 ± 0.9 km.h−1, p < 0.001). There was also significant higher values in HRmax (193 ± 4 vs. 191 ± 2 bpm, p = 0.011), [La-] (11.4 ± 0.4 vs. 11.0 ± 0.5 mmol.L−1, p = 0.039) during the 150-50IT. Nevertheless, significant correlations were noted for MAS (r = 0.71, p = 0.001) and HRmax (r = 0.63, p = 0.007). MAS obtained during the first 150-50IT and the retest were not significantly different (p = 0.76) and were significantly correlated (r = 0.94, p < 0.001, intraclass correlation coefficient = 0.93 and coefficient of variation = 6.8 %). In conclusion, the 150-50IT is highly reproducible, but the maximal physiological responses derived from both tests cannot be interchangeable in the design of training programs.


2021 ◽  
Author(s):  
Luis O Morales ◽  
Alexey Shapiguzov ◽  
Omid Safronov ◽  
Johanna Leppälä ◽  
Lauri Vaahtera ◽  
...  

Abstract Tropospheric ozone (O3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting research of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O3. In this study, we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological mechanisms underlying O3 sensitivity. A key parameter in models for O3 damage is stomatal uptake. Here we show that the extent of O3 damage in the sensitive Arabidopsis accession Shahdara (Sha) does not correspond with O3 uptake, pointing toward stomata-independent mechanisms for the development of O3 damage. We compared tolerant (Col-0) versus sensitive accessions (Sha, Cvi-0) in assays related to photosynthesis, cell death, antioxidants, and transcriptional regulation. Acute O3 exposure increased cell death, development of lesions in the leaves, and decreased photosynthesis in sensitive accessions. In both Sha and Cvi-0, O3-induced lesions were associated with decreased maximal chlorophyll fluorescence and low quantum yield of electron transfer from Photosystem II to plastoquinone. However, O3-induced repression of photosynthesis in these two O3-sensitive accessions developed in different ways. We demonstrate that O3 sensitivity in Arabidopsis is influenced by genetic diversity given that Sha and Cvi-0 developed accession-specific transcriptional responses to O3. Our findings advance the understanding of plant responses to O3 and set a framework for future studies to characterize molecular and physiological mechanisms allowing plants to respond to high O3 levels in the atmosphere as a result of high air pollution and climate change.


Sign in / Sign up

Export Citation Format

Share Document