scholarly journals Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans

2016 ◽  
Vol 120 (11) ◽  
pp. 1355-1363 ◽  
Author(s):  
Sean A. Newsom ◽  
Joseph T. Brozinick ◽  
Katja Kiseljak-Vassiliades ◽  
Allison N. Strauss ◽  
Samantha D. Bacon ◽  
...  

Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D ( P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH ( P < 0.05), tended to be elevated in OB vs. ATH ( P = 0.07), and was inversely related to insulin sensitivity among the entire cohort ( r = −0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio.

2017 ◽  
Vol 103 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Timothy P Gavin ◽  
Jacob M Ernst ◽  
Hyo-Bum Kwak ◽  
Sarah E Caudill ◽  
Melissa A Reed ◽  
...  

Abstract Context Almost 50% of type 2 diabetic (T2D) patients are poorly controlled [glycated hemoglobin (HbA1c) ≥ 7%]; however, the mechanisms responsible for progressively worsening glycemic control are poorly understood. Lower skeletal muscle mitochondrial respiratory capacity is associated with low insulin sensitivity and the development of T2D. Objective We investigated if skeletal muscle insulin sensitivity (SI) was different between well-controlled T2D (WCD) and poorly controlled T2D (PCD) and if the difference was associated with differences resulting from mitochondrial respiratory function. Design Vastus lateralis muscle mitochondrial respiration, mitochondrial content, mitochondrial enzyme activity, and fatty acid oxidation (FAO) were measured. SI and the acute response to glucose (AIRg) were calculated by MINMOD analysis from glucose and insulin obtained during a modified, frequently sampled, intravenous glucose tolerance test. Results SI and AIRg were lower in PCD than WCD. Muscle incomplete FAO was greater in PCD than WCD and greater incomplete FAO was associated with lower SI and higher HbA1c. Hydroxyacyl-coenzyme A dehydrogenase expression and activity were greater in PCD than WCD. There was no difference in maximal mitochondrial respiration or content between WCD and PCD. Conclusion The current results suggest that greater skeletal muscle incomplete FAO in poorly controlled T2D is due to elevated β oxidation and is associated with worsening muscle SI.


2019 ◽  
Vol 316 (4) ◽  
pp. E605-E614 ◽  
Author(s):  
Daniil V. Popov ◽  
Pavel A. Makhnovskii ◽  
Elena I. Shagimardanova ◽  
Guzel R. Gazizova ◽  
Evgeny A. Lysenko ◽  
...  

Reduction in daily activity leads to dramatic metabolic disorders, while regular aerobic exercise training is effective for preventing this problem. The purpose of this study was to identify genes that are directly related to contractile activity in human skeletal muscle, regardless of the level of fitness. Transcriptome changes after the one-legged knee extension exercise in exercised and contralateral nonexercised vastus lateralis muscle of seven men were evaluated by RNA-seq. Transcriptome change at baseline after 2 mo of aerobic training (5/wk, 1 h/day) was evaluated as well. Postexercise changes in the transcriptome of exercised muscle were associated with different factors, including circadian oscillations. To reveal transcriptome response specific for endurance-like contractile activity, differentially expressed genes between exercised and nonexercised muscle were evaluated at 1 and 4 h after the one-legged exercise. The contractile activity-specific transcriptome responses were associated only with an increase in gene expression and were regulated mainly by CREB/ATF/AP1-, MYC/MAX-, and E2F-related transcription factors. Endurance training-induced changes (an increase or decrease) in the transcriptome at baseline were more pronounced than transcriptome responses specific for acute contractile activity. Changes after training were associated with widely different biological processes than those after acute exercise and were regulated by different transcription factors (IRF- and STAT-related factors). In conclusion, adaptation to regular exercise is associated not only with a transient (over several hours) increase in expression of many contractile activity-specific genes, but also with a pronounced change (an increase or decrease) in expression of a large number of genes under baseline conditions.


2000 ◽  
Vol 279 (2) ◽  
pp. H772-H778 ◽  
Author(s):  
R. S. Richardson ◽  
H. Wagner ◽  
S. R. D. Mudaliar ◽  
E. Saucedo ◽  
R. Henry ◽  
...  

Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 ± 0.04) and after (1.2 ± 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 ± 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 ± 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.


2006 ◽  
Vol 91 (8) ◽  
pp. 3224-3227 ◽  
Author(s):  
Frederico G. S. Toledo ◽  
Simon Watkins ◽  
David E. Kelley

Abstract Context: In obesity, skeletal muscle insulin resistance may be associated with smaller mitochondria. Objective: Our objective was to examine the effect of a lifestyle-modification intervention on the content and morphology of skeletal muscle mitochondria and its relationship to insulin sensitivity in obese, insulin-resistant subjects. Design: In this prospective interventional study, intermyofibrillar mitochondrial content and size were quantified by transmission electron microscopy with quantitative morphometric analysis of biopsy samples from vastus lateralis muscle. Systemic insulin sensitivity was measured with euglycemic hyperinsulinemic clamps. Setting: The study took place at a university-based clinical research center. Participants: Eleven sedentary, overweight/obese volunteers without diabetes participated in the study. Intervention: Intervention included 16 wk of aerobic training with dietary restriction of 500-1000 kcal/d. Main Outcome Measures: We assessed changes in mitochondrial content and size and changes in insulin sensitivity. Results: The percentage of myofiber volume occupied by mitochondria significantly increased from 3.70 ± 0.31 to 4.87 ± 0.33% after intervention (P = 0.01). The mean individual increase was 42.5 ± 18.1%. There was also a change in the mean cross-sectional mitochondrial area, increasing from a baseline of 0.078 ± 0.007 to 0.091 ± 0.007 μm2 (P &lt; 0.01), a mean increase of 19.2 ± 6.1% per subject. These changes in mitochondrial size and content highly correlated with improvements in insulin resistance (r = 0.68 and 0.72, respectively; P = 0.01). Conclusions: A combined intervention of weight loss and physical activity in previously sedentary obese adults is associated with enlargement of mitochondria and an increase in the mitochondrial content in skeletal muscle. These findings indicate that in obesity with insulin resistance, ultrastructural mitochondrial plasticity is substantially retained and, importantly, that changes in the morphology of mitochondria are associated with improvements in insulin resistance.


2021 ◽  
Vol 22 (3) ◽  
pp. 1208
Author(s):  
Pavel A. Makhnovskii ◽  
Roman O. Bokov ◽  
Fedor A. Kolpakov ◽  
Daniil V. Popov

Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.


2005 ◽  
Vol 288 (6) ◽  
pp. E1168-E1178 ◽  
Author(s):  
Margarita Teran-Garcia ◽  
Tuomo Rankinen ◽  
Robert A. Koza ◽  
D. C. Rao ◽  
Claude Bouchard

The beneficial effects of regular physical activity on insulin sensitivity (SI) and glucose tolerance are well documented, with considerable heterogeneity in responsiveness to exercise training (ET). To find novel candidate genes for ET-induced improvement in SI, we used microarray technology. Total RNA was isolated from vastus lateralis muscle before and after 20 wk of exercise from individuals participating in the HERITAGE Family Study. SI index was derived from a frequently sampled intravenous glucose tolerance test using MINMOD Millennium software. Sixteen subjects were selected: eight showing no changes in SI (low responders, LSIR) and eight displaying marked improvement in SI (high responders, HSIR) with ET. The SI increase was about four times greater in HSIR compared with LSIR (+3.6 ± 0.5 vs. −1.2 ± 0.5 μU·ml−1·min−1, mean ± SE), whereas age, body mass index, percent body fat, and baseline SI were similar between the groups. Triplicate microarrays were performed, comparing pooled RNA with HSIR and LSIR individuals for differences in gene expression before and after ET using in situ-generated microarrays (18, 861 genes). Array data were validated by quantitative RT-PCR. Almost twice as many genes showed at least twofold differences between HSIR and LSIR after training compared with pretraining. We identified differentially expressed genes involved in energy metabolism and signaling, novel structural genes, and transcripts of unknown function. Genes of interest upregulated in HSIR include V-Ski oncogene, four-and-a-half LIM domain 1, and titin. Further study of these novel candidate genes should provide a better understanding of molecular mechanisms involved in the improvement in insulin sensitivity in response to regular exercise.


2009 ◽  
Vol 161 (3) ◽  
pp. 427-434 ◽  
Author(s):  
Helene Rundqvist ◽  
Eric Rullman ◽  
Carl Johan Sundberg ◽  
Helene Fischer ◽  
Katarina Eisleitner ◽  
...  

Objective:Erythropoietin receptor (EPOR) expression in non-hematological tissues has been shown to be activated by locally produced and/or systemically delivered EPO. Improved oxygen homeostasis, a well-established consequence of EPOR activation, is very important for human skeletal muscle performance. In the present study we investigate whether human skeletal muscle fibers and satellite cells express EPOR and if it is activated by exercise.Design and methodsTen healthy males performed 65 min of cycle exercise. Biopsies were obtained from the vastus lateralis muscle and femoral arterio-venous differences in EPO concentrations were estimated.ResultsThe EPOR protein was localized in areas corresponding to the sarcolemma and capillaries. Laser dissection identified EPOR mRNA expression in muscle fibers. Also, EPOR mRNA and protein were both detected in human skeletal muscle satellite cells. In the initial part of the exercise bout there was a release of EPO from the exercising leg to the circulation, possibly corresponding to an increased bioavailability of EPO. After exercise, EPOR mRNA and EPOR-associated JAK2 phosphorylation were increased.ConclusionsInteraction with JAK2 is required for EPOR signaling and the increase found in phosphorylation is therefore closely linked to the activation of EPOR. The receptor activation by acute exercise suggests that signaling through EPOR is involved in exercise-induced skeletal muscle adaptation, thus extending the biological role of EPO into the skeletal muscle.


2007 ◽  
Vol 103 (4) ◽  
pp. 1242-1250 ◽  
Author(s):  
Scott Trappe ◽  
Andrew Creer ◽  
Dustin Slivka ◽  
Kiril Minchev ◽  
Todd Trappe

There is limited information on skeletal muscle properties in women with unloading and countermeasure programs to protect the unloading-induced atrophy. The current investigation tested the hypothesis that a concurrent aerobic and resistance exercise training program would preserve size and contractile function of slow- and fast-twitch muscle fibers. A secondary objective was to test the hypothesis that a leucine-enriched high-protein diet would partially attenuate single fiber characteristics. Vastus lateralis muscle biopsies were obtained before and on day 59 of bed rest from a control (BR; n = 8), nutrition (BRN; n = 8), or exercise (BRE; n = 8) group. Single muscle fibers were studied for diameter, peak force (Po), contractile velocity, and power. Those in the BR group had a decrease ( P < 0.05) in myosin heavy chain (MHC) I diameter (−14%), Po (−35%), and power (−42%) and MHC IIa diameter (−16%) and Po (−31%; P = 0.06) and an increase ( P < 0.05) in MHC hybrid fibers. Changes in size and function of MHC I (−19 to −44%) and IIa (−21% to −30%) fibers and MHC distribution in BRN individuals were similar to results in the BR group. In BRE conditions, MHC I and IIa size and contractile function were preserved during bed rest. These data show that the concurrent exercise program preserved the myocellular profile of the vastus lateralis muscle during 60-day bed rest. To combat muscle atrophy and function with long-term unloading, the exercise prescription program used in this study should be considered as a viable training program for the upper leg muscles, whereas the nutritional intervention used cannot be recommended as a countermeasure for skeletal muscle.


1999 ◽  
Vol 87 (4) ◽  
pp. 1483-1490 ◽  
Author(s):  
Dave A. MacLean ◽  
Jens Bangsbo ◽  
Bengt Saltin

The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 ± 2.5 and 32.0 ± 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 ± 3.9%) and lactate (66.3 ± 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 ± 0.2 mM) was lower than both the arterial (5.6 ± 0.2 mM) and venous (5.3 ± 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower ( P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 ± 0.2 mM) was higher ( P < 0.05) than both the arterial (0.9 ± 0.2 mM) and venous (1.1 ± 0.2 mM) plasma water lactate levels. This relationship was maintained ( P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.


2006 ◽  
Vol 291 (1) ◽  
pp. E90-E98 ◽  
Author(s):  
Kristen J. Nadeau ◽  
Lindsay B. Ehlers ◽  
Lina E. Aguirre ◽  
Russell L. Moore ◽  
Korinne N. Jew ◽  
...  

Intramuscular triglyceride (IMTG) deposition in skeletal muscle is associated with obesity and type 2 diabetes (T2DM) and is thought to be related to insulin resistance (IR). Curiously, despite enhanced skeletal muscle insulin sensitivity, highly trained athletes and calorie-restricted (CR) monkeys also have increased IMTG. Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate the biosynthesis of cholesterol and fatty acids. SREBP-1 is increased by insulin in skeletal muscle in vitro and in skeletal muscle of IR subjects, but SREBP-1 expression has not been examined in exercise training or calorie restriction. We examined the relationship between IMTG and SREBP-1 expression in animal models of exercise and calorie restriction. Gastrocnemius and soleus muscle biopsies were obtained from 38 Sprague-Dawley rats (18 control and 20 exercise trained). Triglyceride content was higher in the gastrocnemius and soleus muscles of the trained rats. SREBP-1c mRNA, SREBP-1 precursor and mature proteins, and fatty acid synthase (FAS) protein were increased with exercise training. Monkeys ( Macaca mulatta) were CR for a mean of 10.4 years, preventing weight gain and IR. Vastus lateralis muscle was obtained from 12 monkeys (6 CR and 6 controls). SREBP-1 precursor and mature proteins and FAS protein were higher in the CR monkeys. In addition, phosphorylation of ERK1/ERK2 was increased in skeletal muscle of CR animals. In summary, SREBP-1 protein and SREBP-1c mRNA are increased in interventions that increase IMTG despite enhanced insulin sensitivity. CR and exercise-induced augmentation of SREBP-1 expression may be responsible for the increased IMTG seen in skeletal muscle of highly conditioned athletes.


Sign in / Sign up

Export Citation Format

Share Document