Periodic unitary synaptic currents in the mouse globus pallidus during spontaneous firing in slices

Author(s):  
Matthew Henry Higgs ◽  
James A Jones ◽  
C. Savio Chan ◽  
Charles J. Wilson

Neurons in the external globus pallidus (GPe) are autonomous pacemakers, but their spontaneous firing is continually perturbed by synaptic input. Because GPe neurons fire rhythmically in slices, spontaneous inhibitory synaptic currents (IPSCs) should be evident there. We identified periodic series of IPSCs in slices, each corresponding to unitary synaptic currents from one presynaptic cell. Optogenetic stimulation of the striatal indirect pathway axons caused a pause and temporal resetting of the periodic input, confirming that it arose from local neurons subject to striatal inhibition. We determined the firing statistics of the presynaptic neurons from the unitary IPSC statistics and estimated their frequencies, peak amplitudes, and reliabilities. To determine what types of GPe neurons received the spontaneous inhibition, we recorded from genetically labeled parvalbumin (PV) and Npas1 expressing neurons. Both cell types received periodic spontaneous IPSCs with similar frequencies. Optogenetic inhibition of PV neurons reduced the spontaneous IPSC rate in almost all neurons with active unitary inputs, whereas inhibition of Npas1 neurons rarely affected the spontaneous IPSC rate in any neurons. These results suggest that PV neurons provided most of the active unitary inputs to both cell types. Optogenetic pulse stimulation of PV neurons at light levels that can activate cut axons yielded an estimate of connectivity in the fully connected network. The local network is a powerful source of inhibition to both PV and Npas1 neurons, that contributes to irregular firing and may influence the responses to external synaptic inputs.

2021 ◽  
Vol 22 (11) ◽  
pp. 6054
Author(s):  
Ioanna Kokkinopoulou ◽  
Paraskevi Moutsatsou

Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.


2021 ◽  
pp. jclinpath-2020-206927
Author(s):  
Maryam Ahmed Al Barashdi ◽  
Ahlam Ali ◽  
Mary Frances McMullin ◽  
Ken Mills

The leucocyte common antigen, protein tyrosine phosphatase receptor type C (PTPRC), also known as CD45, is a transmembrane glycoprotein, expressed on almost all haematopoietic cells except for mature erythrocytes, and is an essential regulator of T and B cell antigen receptor-mediated activation. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity (from CD45 and others) can result in immunodeficiency, autoimmunity, or malignancy. CD45 is normally present on the cell surface, therefore it works upstream of a large signalling network which differs between cell types, and thus the effects of CD45 on these cells are also different. However, it is becoming clear that CD45 plays an essential role in the innate immune system and this is likely to be a key area for future research. In this review of PTPRC (CD45), its structure and biological activities as well as abnormal expression of CD45 in leukaemia and lymphoma will be discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stephan Hailfinger ◽  
Klaus Schulze-Osthoff

Abstract Psoriasis is a frequent autoimmune-related skin disease, which involves various cell types such as T cells, keratinocytes and dendritic cells. Genetic variations, such as mutations of CARD14, can promote the development of the disease. CARD14 mutations as well as the stimulation of immune and cytokine receptors activate the paracaspase MALT1, a potent activator of the transcription factors NF-κB and AP-1. The disease-promoting role of MALT1 for psoriasis is mediated by both its protease activity as well as its molecular scaffold function. Here, we review the importance of MALT1-mediated signaling and its therapeutic implications in psoriasis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5730
Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components. The hydrogels were characterized by Fourier transform-infrared spectroscopy, scanning electron microscopy, and a swelling degree. Betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at a different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner for up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay showed that almost all hydrogels are cytocompatibles and an increase of proliferation in both cell types after one week of incubation was observed by the Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics, and biocompatibility.


2021 ◽  
Vol 383 (1) ◽  
pp. 113-123
Author(s):  
Sudeshna Das Chakraborty ◽  
Silke Sachse

AbstractSensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.


2020 ◽  
Vol 22 (1) ◽  
pp. 44
Author(s):  
Marc Micó-Carnero ◽  
Carlos Rojano-Alfonso ◽  
Ana Isabel Álvarez-Mercado ◽  
Jordi Gracia-Sancho ◽  
Araní Casillas-Ramírez ◽  
...  

Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut–liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.


1983 ◽  
Vol 50 (5) ◽  
pp. 1197-1219 ◽  
Author(s):  
T. W. Berger ◽  
P. C. Rinaldi ◽  
D. J. Weisz ◽  
R. F. Thompson

Extracellular single-unit recordings from neurons in the CA1 and CA3 regions of the dorsal hippocampus were monitored during classical conditioning of the rabbit nictitating membrane response. Neurons were classified as different cell types using response to fornix stimulation (i.e., antidromic or orthodromic activation) and spontaneous firing characteristics as criteria. Results showed that hippocampal pyramidal neurons exhibit learning-related neural plasticity that develops gradually over the course of classical conditioning. The learning-dependent pyramidal cell response is characterized by an increase in frequency of firing within conditioning trials and a within-trial pattern of discharge that correlates strongly with amplitude-time course of the behavioral response. In contrast, pyramidal cell activity recorded from control animals given unpaired presentations of the conditioned and unconditioned stimulus (CS and UCS) does not show enhanced discharge rates with repeated stimulation. Previous studies of hippocampal cellular electrophysiology have described what has been termed a theta-cell (19-21, 45), the activity of which correlates with slow-wave theta rhythm generated in the hippocampus. Neurons classified as theta-cells in the present study exhibit responses during conditioning that are distinctly different than pyramidal cells. theta-Cells respond during paired conditioning trials with a rhythmic bursting; the between-burst interval occurs at or near 8 Hz. In addition, two different types of theta-cells were distinguishable. One type of theta-cell increases firing frequency above pretrial levels while displaying the theta bursting pattern. The other type decreases firing frequency below pretrial rates while showing a theta-locked discharge. In addition to pyramidal and theta-neurons, several other cell types recorded in or near the pyramidal cell layer could be distinguished. One cell type was distinctive in that it could be activated with a short, invariant latency following fornix stimulation, but spontaneous action potentials of such neurons could not be collided with fornix shock-induced action potentials. These neurons exhibit a different profile of spontaneous firing characteristics than those of antidromically identified pyramidal cells. Nevertheless, neurons in this noncollidable category display the same learning-dependent response as pyramidal cells. It is suggested that the noncollidable neurons represent a subpopulation of pyramidal cells that do not project an axon via the fornix but project, instead, to other limbic cortical regions.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 100 (6) ◽  
pp. 997-1001 ◽  
Author(s):  
Mitsuhiro Ogura ◽  
Naoyuki Nakao ◽  
Ekini Nakai ◽  
Yuji Uematsu ◽  
Toru Itakura

Object. Although chronic electrical stimulation of the globus pallidus (GP) has been shown to ameliorate motor disabilities in Parkinson disease (PD), the underlying mechanism remains to be clarified. In this study the authors explored the mechanism for the effects of deep brain stimulation of the GP by investigating the changes in neurotransmitter levels in the cerebrospinal fluid (CSF) during the stimulation. Methods. Thirty patients received chronic electrical stimulation of the GP internus (GPi). Clinical effects were assessed using the Unified PD Rating Scale (UPDRS) and the Hoehn and Yahr Staging Scale at 1 week before surgery and at 6 and 12 months after surgery. One day after surgery, CSF samples were collected through a ventricular tube before and 1 hour after GPi stimulation. The concentration of neurotransmitters such as γ-aminobutyric acid (GABA), noradrenaline, dopamine, and homovanillic acid (HVA) in the CSF was measured using high-performance liquid chromatography. The treatment was effective for tremors, rigidity, and drug-induced dyskinesia. The concentration of GABA in the CSF increased significantly during stimulation, although there were no significant changes in the level of noradrenaline, dopamine, and HVA. A comparison between an increased rate of GABA concentration and a lower UPDRS score 6 months postimplantation revealed that the increase in the GABA level correlated with the stimulation-induced clinical effects. Conclusions. Stimulation of the GPi substantially benefits patients with PD. The underlying mechanism of the treatment may involve activation of GABAergic afferents in the GP.


Sign in / Sign up

Export Citation Format

Share Document