scholarly journals Background Noise Improves Gap Detection in Tonically Inhibited Inferior Colliculus Neurons

2002 ◽  
Vol 87 (1) ◽  
pp. 240-249 ◽  
Author(s):  
Willard W. Wilson ◽  
Joseph P. Walton

Single units in the inferior colliculus (IC) in the C57Bl/6 inbred mouse strain were tested for their temporal processing ability as measured by their minimum gap threshold (MGT), the shortest silent interval in an ongoing white-noise stimulus which a unit could encode. After ascertaining the MGT in quiet, units were re-tested in various levels of background noise. The focus of this report is on two types of tonically responding units found in the IC. Tonically inhibited (TI) units encoded gaps poorly in quiet and low levels of background noise as compared with tonically excited (TE) units. In quiet, the MGTs of TI units were about an order of magnitude longer than the MGTs typical of TE units. Paradoxically, gap encoding was improved in high levels of background noise for TI units. This result is unexpected from the traditional viewpoint that noise necessarily degrades signal processing and is inconsistent with psychophysical observations of diminished speech and gap detection processing in noisy environments. We believe the improved feature detection described here is produced by the adaptation of inhibitory input. Continuous background noise would diminish the inhibitory efficacy of the gap stimulus by increasing the latency to the onset of inhibition and decreasing its duration. This would allow more spontaneous activity to “bleed through” the silent gap, thus signaling its presence. Improved feature detection in background noise resulting from inhibitory adaptation would seem an efficient neural mechanism and one that might be generally useful in other signal detection tasks.

Genetics ◽  
1982 ◽  
Vol 100 (1) ◽  
pp. 79-87
Author(s):  
Daniel W Nebert ◽  
Nancy M Jensen ◽  
Hisashi Shinozuka ◽  
Heinz W Kunz ◽  
Thomas J Gill

ABSTRACT Forty-four inbred and four randombred rat strains and 20 inbred mouse strains were examined for their Ah phenotype by determining the induction of liver microsomal aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity (EC 1.14.14.1) by intraperitoneal treatment with either β-naphthoflavone or 3-methylcholanthrene. All 48 rat strains were found to be Ah-responsive. The maximally induced hydroxylase specific activities of the ALB/Pit, MNR/Pit, MR/Pit, SHR/Pit, and Sprague-Dawley strains were of the same order of magnitude as the basal hydroxylase specific activities of the ACI/Pit, F344/Pit, OKA/Pit, and MNR/N strains. Six of the 20 mouse strains were Ah-nonresponsive (i.e. lacking the normal induction response and presumably lacking detectable amounts of the Ah receptor). The basal hydroxylase specific activities of the BDL/N, NFS/N, STAR/N, and ST/JN mouse strains were more than twice as high as the maximally induced hydroxylase specific activity of the CBA/HT strain.——To date, 24 Ah-nonresponsive mouse strains have been identified, out of a total of 68 known to have been characterized. The reasons for not finding a single Ah-nonresponsive inbred rat strain—as compared with about one Ah-nonresponsive inbred mouse strain found for every three examined—remain unknown.


1990 ◽  
Vol 172 (4) ◽  
pp. 1177-1183 ◽  
Author(s):  
R Patarca ◽  
F Y Wei ◽  
P Singh ◽  
M I Morasso ◽  
H Cantor

The development of autoimmune disease in the MRL/MpJ-lpr inbred mouse strain depends upon the maturation of a subset of T lymphocytes that may cause sustained activation of immunological effector cells such as B cells and macrophages. We tested the hypothesis that abnormal effector cell activation reflects constitutive overexpression of a T cell cytokine. We found that a newly defined T cell cytokine, Eta-1, is expressed at very high levels in T cells from MRL/l mice but not normal mouse strains and in a CD4-8- 45R+ T cell clone. The Eta-1 gene encodes a secreted protein that binds specifically to macrophages, possibly via a cell adhesion receptor, resulting in alterations in the mobility and activation state of this cell type (Patarca, R., G. J. Freeman, R. P. Singh, et al. 1989. J. Exp. Med. 170:145; Singh, R. P., R. Patarca, J. Schwartz, P. Singh, and H. Cantor. 1990. J. Exp. Med. 171:1931). In addition, recent studies have indicated that Eta-1 can enhance secretion of IgM and IgG by mixtures of macrophages and B cells (Patarca, R., M. A. Lampe, M. V. Iregai, and H. Cantor, manuscript in preparation). Dysregulation of Eta-1 expression begins at the onset of autoimmune disease and continues throughout the course of this disorder. Maximal levels of Eta-1 expression and the development of severe autoimmune disease reflect the combined contribution of the lpr gene and MRL background genes.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Sou Hyun Kim ◽  
Doyoung Kwon ◽  
Seung Won Son ◽  
Tae Bin Jeong ◽  
Seunghyun Lee ◽  
...  

Abstract Background Inflammatory bowel disease (IBD), including both Crohn’s disease and ulcerative colitis, are chronic human diseases that are challenging to cure and are often unable to be resolved. The inbred mouse strain C57BL/6 N has been used in investigations of IBD as an experimental animal model. The purpose of the current study was to compare the inflammatory responsiveness of C57BL/6NKorl mice, a sub-strain recently established by the National Institute of Food and Drug Safety Evaluation (NIFDS), with those of C57BL/6 N mice from two different sources using a dextran sulfate sodium (DSS)-induced colitis model. Results Male mice (8 weeks old) were administered DSS (0, 1, 2, or 3%) in drinking water for 7 days. DSS significantly decreased body weight and colon length and increased the colon weight-to-length ratio. Moreover, severe colitis-related clinical signs including diarrhea and rectal bleeding were observed beginning on day 4 in mice administered DSS at a concentration of 3%. DSS led to edema, epithelial layer disruption, inflammatory cell infiltration, and cytokine induction (tumor necrosis factor-α, interleukin-6, and interleukin-1β) in the colon tissues. However, no significant differences in DSS-promoted abnormal symptoms or their severity were found between the three sub-strains. Conclusions These results indicate that C57BL/6NKorl mice responded to DSS-induced colitis similar to the generally used C57BL6/N mice, thus this newly developed mouse sub-strain provides a useful animal model of IBD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Maria Fritz ◽  
Matthias Kreuzer ◽  
Alp Altunkaya ◽  
Nicolas Singewald ◽  
Thomas Fenzl

AbstractSleep disturbances are a common complaint of anxiety patients and constitute a hallmark feature of post-traumatic stress disorder (PTSD). Emerging evidence suggests that poor sleep is not only a secondary symptom of anxiety- and trauma-related disorders but represents a risk factor in their development, for example by interfering with emotional memory processing. Fear extinction is a critical mechanism for the attenuation of fearful and traumatic memories and multiple studies suggest that healthy sleep is crucial for the formation of extinction memories. However, fear extinction is often impaired in anxiety- and trauma-related disorders—an endophenotype that is perfectly modelled in the 129S1/SvImJ inbred mouse strain. To investigate whether these mice exhibit altered sleep at baseline that could predispose them towards maladaptive fear processing, we compared their circadian sleep/wake patterns to those of typically extinction-competent C57BL/6 mice. We found significant differences regarding diurnal distribution of sleep and wakefulness, but also sleep architecture, spectral features and sleep spindle events. With regard to sleep disturbances reported by anxiety- and PTSD patients, our findings strengthen the 129S1/SvImJ mouse models’ face validity and highlight it as a platform to investigate novel, sleep-focused diagnostic and therapeutic strategies. Whether the identified alterations causally contribute to its pathological anxiety/PTSD-like phenotype will, however, have to be addressed in future studies.


1987 ◽  
Vol 57 (4) ◽  
pp. 1130-1147 ◽  
Author(s):  
M. N. Semple ◽  
L. M. Kitzes

The central auditory system could encode information about the location of a high-frequency sound source by comparing the sound pressure levels at the ears. Two potential computations are the interaural intensity difference (IID) and the average binaural intensity (ABI). In this study of the central nucleus of the inferior colliculus (ICC) of the anesthetized gerbil, we demonstrate that responses of 85% of the 97 single units in our sample were jointly influenced by IID and ABI. For a given ABI, discharge rate of most units is a sigmoidal function of IID, and peak rates occur at IIDs favoring the contralateral ear. Most commonly, successive increments of ABI cause successive shifts of the IID functions toward IIDs favoring the ipsilateral ear. Neurons displaying this behavior include many that would conventionally be classified EI (receiving predominantly excitatory input arising from one ear and inhibitory input from the other), many that would be classified EE (receiving predominantly excitatory input arising from each ear), and all that are responsive only to contralateral stimulation. The IID sensitivity of a very few EI neurons is unaffected by ABI, except near threshold. Such units could provide directional information that is independent of source intensity. A few EE neurons are very sensitive to ABI, but are minimally sensitive to IID. Nevertheless, our data indicate that responses of most EE units in ICC are strongly dominated by excitation of contralateral origin. For some units, discharge rate is nonmonotonically related to IID and is maximal when the stimuli at the two ears are of comparable sound pressure. This preference for zero IID is common for all binaural levels. Many EI neurons respond nonmonotonically to ABI. Discharge rates are greater for IIDs representative of contralateral space and are maximal at a single best ABI. For a subset of these neurons, the influence arising from the ipsilateral ear is comprised of a mixture of excitation and inhibition. As a consequence, discharge rates are nonmonotonically related not only to ABI but also to IID. This dual nonmonotonicity creates a clear focus of peak response at a particular ABI/IID combination. Because of their mixed monaural influences, such units would be ascribed to different classes of the conventional (EE/EI) binaural classification scheme depending on the binaural level presented. Several response classes were identified in this study, and each might contribute differently to the encoding of spatial information.(ABSTRACT TRUNCATED AT 400 WORDS)


2010 ◽  
Vol 78 (9) ◽  
pp. 3848-3860 ◽  
Author(s):  
Lien Dejager ◽  
Iris Pinheiro ◽  
Pieter Bogaert ◽  
Liesbeth Huys ◽  
Claude Libert

ABSTRACT Infection with Salmonella enterica serovar Typhimurium is a complex disease in which the host-bacterium interactions are strongly influenced by genetic factors of the host. We demonstrate that SPRET/Ei, an inbred mouse strain derived from Mus spretus, is resistant to S. Typhimurium infections. The kinetics of bacterial proliferation, as well as histological examinations of tissue sections, suggest that SPRET/Ei mice can control bacterial multiplication and spreading despite significant attenuation of the cytokine response. The resistance of SPRET/Ei mice to S. Typhimurium infection is associated with increased leukocyte counts in the circulation and enhanced neutrophil influx into the peritoneum during the course of infection. A critical role of neutrophils was confirmed by neutrophil depletion: neutropenic SPRET/Ei mice were sensitive to infection with S. Typhimurium and showed much higher bacterial loads. To identify genes that modulate the natural resistance of SPRET/Ei mice to S. Typhimurium infection, we performed a genome-wide study using an interspecific backcross between C3H/HeN and SPRET/Ei mice. The results of this analysis demonstrate that at least two loci, located on chromosomes 6 and 11, affect survival following lethal infection with S. Typhimurium. These two loci contain several interesting candidate genes which may have important implications for the search for genetic factors controlling Salmonella infections in humans and for our understanding of complex host-pathogen interactions in general.


1996 ◽  
Vol 109 (9) ◽  
pp. 2199-2206
Author(s):  
A.R. Mitchell ◽  
P. Jeppesen ◽  
L. Nicol ◽  
H. Morrison ◽  
D. Kipling

Chromosome 1 of the inbred mouse strain DBA/2 has a polymorphism associated with the minor satellite DNA at its centromere. The more terminal block of satellite DNA sequences on this chromosome acts as the centromere as shown by the binding of CREST ACA serum, anti-CENP-B and anti-CENP-E polyclonal sera. Demethylation of the minor satellite DNA sequences accomplished by growing cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal block and in addition it now binds to the more internal block of minor satellite DNA sequences on chromosome 1. The binding of the CENP-E protein does not appear to be affected by demethylation of the minor satellite sequences. We present a model to explain these observations. This model may also indicate the mechanism by which the CENP-B protein recognises specific sites within the arrays of minor satellite DNA on mouse chromosomes.


1998 ◽  
Vol 79 (4) ◽  
pp. 2040-2062 ◽  
Author(s):  
Willard W. Wilson ◽  
William E. O'Neill

Wilson, Willard W. and William E. O'Neill. Auditory motion induces directionally dependent receptive field shifts in inferior colliculus neurons. J. Neurophysiol. 79: 2040–2062, 1998. This research focused on the response of neurons in the inferior colliculus of the unanesthetized mustached bat, Pteronotus parnelli, to apparent auditory motion. We produced the apparent motion stimulus by broadcasting pure-tone bursts sequentially from an array of loudspeakers along horizontal, vertical, or oblique trajectories in the frontal hemifield. Motion direction had an effect on the response of 65% of the units sampled. In these cells, motion in opposite directions produced shifts in receptive field locations, differences in response magnitude, or a combination of the two effects. Receptive fields typically were shifted opposite the direction of motion (i.e., units showed a greater response to moving sounds entering the receptive field than exiting) and shifts were obtained to horizontal, vertical, and oblique motion orientations. Response latency also shifted as a function of motion direction, and stimulus locations eliciting greater spike counts also exhibited the shortest neural latency. Motion crossing the receptive field boundaries appeared to be both necessary and sufficient to produce receptive field shifts. Decreasing the silent interval between successive stimuli in the apparent motion sequence increased both the probability of obtaining a directional effect and the magnitude of receptive field shifts. We suggest that the observed directional effects might be explained by “spatial masking,” where the response of auditory neurons after stimulation from particularly effective locations in space would be diminished. The shift in auditory receptive fields would be expected to shift the perceived location of a moving sound and may explain shifts in localization of moving sources observed in psychophysical studies. Shifts in perceived target location caused by auditory motion might be exploited by auditory predators such as Pteronotus in a predictive tracking strategy to capture moving insect prey.


Sign in / Sign up

Export Citation Format

Share Document