scholarly journals Ion Channels Set Spike Timing Regularity of Mammalian Vestibular Afferent Neurons

2010 ◽  
Vol 104 (4) ◽  
pp. 2034-2051 ◽  
Author(s):  
Radha Kalluri ◽  
Jingbing Xue ◽  
Ruth Anne Eatock

In the mammalian vestibular nerve, some afferents have highly irregular interspike intervals and others have highly regular intervals. To investigate whether spike timing is determined by the afferents' ion channels, we studied spiking activity in their cell bodies, isolated from the vestibular ganglia of young rats. Whole cell recordings were made with the perforated-patch method. As previously reported, depolarizing current steps revealed distinct firing patterns. Transient neurons fired one or two onset spikes, independent of current level. Sustained neurons were more heterogeneous, firing either trains of spikes or a spike followed by large voltage oscillations. We show that the firing pattern categories are robust, occurring at different temperatures and ages, both in mice and in rats. A difference in average resting potential did not cause the difference in firing patterns, but contributed to differences in afterhyperpolarizations. A low-voltage-activated potassium current ( ILV) was previously implicated in the transient firing pattern. We show that ILV grew from the first to second postnatal week and by the second week comprised Kv1 and Kv7 (KCNQ) components. Blocking ILV converted step-evoked firing patterns from transient to sustained. Separated from their normal synaptic inputs, the neurons did not spike spontaneously. To test whether the firing-pattern categories might correspond to afferent populations of different regularity, we injected simulated excitatory postsynaptic currents at pseudorandom intervals. Sustained neurons responded to a given pattern of input with more regular firing than did transient neurons. Pharmacological block of ILV made firing more regular. Thus ion channel differences that produce transient and sustained firing patterns in response to depolarizing current steps can also produce irregular and regular spike timing.

2020 ◽  
Vol 123 (1) ◽  
pp. 90-106 ◽  
Author(s):  
Saray Soldado-Magraner ◽  
Federico Brandalise ◽  
Suraj Honnuraiah ◽  
Michael Pfeiffer ◽  
Marie Moulinier ◽  
...  

Unlike synaptic strength, intrinsic excitability is assumed to be a stable property of neurons. For example, learning of somatic conductances is generally not incorporated into computational models, and the discharge pattern of neurons in response to test stimuli is frequently used as a basis for phenotypic classification. However, it is increasingly evident that signal processing properties of neurons are more generally plastic on the timescale of minutes. Here we demonstrate that the intrinsic firing patterns of CA3 neurons of the rat hippocampus in vitro undergo rapid long-term plasticity in response to a few minutes of only subthreshold synaptic conditioning. This plasticity on the spike timing could also be induced by intrasomatic injection of subthreshold depolarizing pulses and was blocked by kinase inhibitors, indicating that discharge dynamics are modulated locally. Cluster analysis of firing patterns before and after conditioning revealed systematic transitions toward adapting and intrinsic burst behaviors, irrespective of the patterns initially exhibited by the cells. We used a conductance-based model to decide appropriate pharmacological blockade and found that the observed transitions are likely due to recruitment of low-voltage calcium and Kv7 potassium conductances. We conclude that CA3 neurons adapt their conductance profile to the subthreshold activity of their input, so that their intrinsic firing pattern is not a static signature, but rather a reflection of their history of subthreshold activity. In this way, recurrent output from CA3 neurons may collectively shape the temporal dynamics of their embedding circuits. NEW & NOTEWORTHY Although firing patterns are widely conserved across the animal phyla, it is still a mystery why nerve cells present such diversity of discharge dynamics upon somatic step currents. Adding a new timing dimension to the intrinsic plasticity literature, here we show that CA3 neurons rapidly adapt through the space of known firing patterns in response to the subthreshold signals that they receive from their embedding circuit, potentially adjusting their network processing to the temporal statistics of their circuit.


2016 ◽  
Vol 116 (2) ◽  
pp. 503-521 ◽  
Author(s):  
Ariel E. Hight ◽  
Radha Kalluri

The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182–187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41–51, 1986). Kalluri et al. ( J Neurophysiol 104: 2034–2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents ( IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium ( gNa), low-voltage-activated potassium ( gKL), and high-voltage-activated potassium ( gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.


2017 ◽  
Author(s):  
Saray Soldado-Magraner ◽  
Federico Brandalise ◽  
Suraj Honnuraiah ◽  
Michael Pfeiffer ◽  
Urs Gerber ◽  
...  

AbstractUnlike synaptic strength, intrinsic excitability is assumed to be a stable property of neurons. For example, learning of somatic conductances is generally not incorporated into computational models, and the discharge pattern of neurons in response to test stimuli is frequently used as a basis for phenotypic classification. However, it is increasingly evident that signal processing properties of neurons are more generally plastic on the timescale of minutes. Here we demonstrate that the intrinsic firing patterns of CA3 neurons of the rat hippocampus in vitro undergo rapid long-term plasticity in response to a few minutes of only subthreshold synaptic conditioning. This plasticity on the spike-timing could also be induced by intrasomatic injection of subthreshold depolarizing pulses and was blocked by kinase inhibitors, indicating that discharge dynamics are modulated locally. Cluster analysis of firing patterns before and after conditioning revealed systematic transitions towards adapting and intrinsic burst behaviours, irrespective of the patterns initially exhibited by the cells. We used a conductance-based model to decide appropriate pharmacological blockade, and found that the observed transitions are likely due to recruitment of calcium and M-type potassium conductances. We conclude that CA3 neurons adapt their conductance profile to the subthreshold activity of their input, so that their intrinsic firing pattern is not a static signature, but rather a reflection of their history of subthreshold activity. In this way, recurrent output from CA3 neurons may collectively shape the temporal dynamics of their embedding circuits.New & NoteworthyDespite being widely conserved across the animal phyla, it is still a mystery why nerve cells present diverse discharge dynamics upon somatic step currents. Adding a new timing dimension to the intrinsic plasticity literature, here we show that CA3 neurons rapidly adapt through the space of known firing patterns in response to the subthreshold signals that they receive from their embedding circuit. This result implies that CA3 neurons collectively adjust their network processing to the temporal statistics of their circuit.


Author(s):  
D. T. Gauld ◽  
J. E. G. Raymont

The respiratory rates of three species of planktonic copepods, Acartia clausi, Centropages hamatus and Temora longicornis, were measured at four different temperatures.The relationship between respiratory rate and temperature was found to be similar to that previously found for Calanus, although the slope of the curves differed in the different species.The observations on Centropages at 13 and 170 C. can be divided into two groups and it is suggested that the differences are due to the use of copepods from two different generations.The relationship between the respiratory rates and lengths of Acartia and Centropages agreed very well with that previously found for other species. That for Temora was rather different: the difference is probably due to the distinct difference in the shape of the body of Temora from those of the other species.The application of these measurements to estimates of the food requirements of the copepods is discussed.


2013 ◽  
Vol 457-458 ◽  
pp. 65-71
Author(s):  
Jing Ru Jia

The polyfunctional organic compounds 2- hydroxymethyl -1,4- butanediol (trihydric alcohol) and toluene diisocyanate -2, 4- diisocyanate (TDI) were taken as the raw materials in this study. A polyurethane dendrimer was synthesized by utilizing the difference in the reaction activity of two isocyanate groups of TDI at different temperatures. The polymerization process conditions were studied. The addition polymerization of para-position NCO groups occurred at 50 °C, and that of ortho NCO groups occurred at 90 °C. According to the structure of the dendrimer synthesized, methyl orange was used as the guest molecule. Consequently, the aqueous methyl orange showed a phase transfer. With the increase of dendrimer concentration, the transfer rate of methyl orange increased.


2000 ◽  
Vol 83 (2) ◽  
pp. 808-827 ◽  
Author(s):  
P. E. Latham ◽  
B. J. Richmond ◽  
P. G. Nelson ◽  
S. Nirenberg

Many networks in the mammalian nervous system remain active in the absence of stimuli. This activity falls into two main patterns: steady firing at low rates and rhythmic bursting. How are these firing patterns generated? Specifically, how do dynamic interactions between excitatory and inhibitory neurons produce these firing patterns, and how do networks switch from one firing pattern to the other? We investigated these questions theoretically by examining the intrinsic dynamics of large networks of neurons. Using both a semianalytic model based on mean firing rate dynamics and simulations with large neuronal networks, we found that the dynamics, and thus the firing patterns, are controlled largely by one parameter, the fraction of endogenously active cells. When no endogenously active cells are present, networks are either silent or fire at a high rate; as the number of endogenously active cells increases, there is a transition to bursting; and, with a further increase, there is a second transition to steady firing at a low rate. A secondary role is played by network connectivity, which determines whether activity occurs at a constant mean firing rate or oscillates around that mean. These conclusions require only conventional assumptions: excitatory input to a neuron increases its firing rate, inhibitory input decreases it, and neurons exhibit spike-frequency adaptation. These conclusions also lead to two experimentally testable predictions: 1) isolated networks that fire at low rates must contain endogenously active cells and 2) a reduction in the fraction of endogenously active cells in such networks must lead to bursting.


1875 ◽  
Vol 23 (156-163) ◽  
pp. 463-464 ◽  

Many years ago I projected an experiment to test the voltaic relations between different metals with glass substituted for the electrolytic liquid of an ordinary simple voltaic cell, and with so high a temperature that the glass would have conducting-power sufficient to allow induction through it to rule the difference of potentials between the two metals. Imperfect instrumental arrangements, and want of knowledge of the temperature at which glass would have sufficient conductivity to give satisfactory results, have hitherto prevented me from carrying out the proposed investigation. The quadrant electrometer has supplied the first of these deficiencies, and Mr. Perry’s recent experiments on the conductivity of glass at different temperatures the second. The investigation has now been resumed; and in a preliminary experiment I have already obtained a very decided result.


2001 ◽  
Vol 86 (6) ◽  
pp. 2998-3010 ◽  
Author(s):  
Nace L. Golding ◽  
William L. Kath ◽  
Nelson Spruston

In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 μm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 μm from the soma, action potentials in most cells backpropagated either strongly (26–42% attenuation; n = 9/20) or weakly (71–87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300–410 μm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.


Author(s):  
Hana Šulcerová ◽  
Jiří Štencl ◽  
A. Šulcová

Heat-treated salamis “Vysočina“ were produced with standard way in a meat factory; their diameter was 55 mm. Samples were stored under laboratory conditions at different temperatures: 5, 10, 15, 20, and 25 °C and sensory analysed every week during one month storage. The dry matter (d.m.) was measured, too. Descriptors of general appearance, sausage casing, texture, cut surface, dry edge, smell, taste, and salty were monitored. Biggest changes were in descriptors general appearance and sausage casing (P < 0.001) and also in dry edge (P < 0.010) during the month period. Germs of moulds were found only at 5 and 10 °C. Rapid increase of d.m. in samples was noticeable in the first week of the storage time. It was 3 % d.m. at 5 °C and 11 % d.m. at 25 °C. Increase of d.m. of salamis continues slowly in the next three weeks period; the total difference was about 10 % d.m. in the temperature range measured. Decrease of d.m. at 5 °C was noticed in the last week of the measurement. The difference was 3.5 % d.m. This change means that the equilibrium moisture content of the samples of salamis has been reached at the temperature 5 °C. The best sensorial quality of salamis “Vysočina” was in the storage temperature ranged from 15 to 20 °C.


2020 ◽  
Vol 4 ◽  
pp. 65-71
Author(s):  
E.A. Veshkin ◽  
◽  
V.I. Postnov ◽  
V.V. Semenychev ◽  
E.V. Krasheninnikova ◽  
...  

The change in the microhardness over the thickness of samples made of EDT-69N binder cured in vacuum and at atmospheric pressure at temperatures from 130 to 170°C was investigated. It was found that the change in microhardness along the thickness of the samples occurs according to the parabolic law, with the maximum values being achieved in the middle of the sample cross-section along the thickness. With an increase in the molding temperature, the microhardness in the middle section of the sample increases from 222 MPa at a molding temperature of 130°C to 410 MPa during molding at 170°C. At the critical molding temperature (170°C), the microhardness in all zones of the specimen cross section (subsurface, semi-average, and core) levels off, while the parabolic dependence degenerates into a straight line. It is shown that the method of scratching (sclerometry) demonstrated a sufficiently high sensitivity to the state of samples cured at different temperatures. With an increase in the molding temperature, the width of the sclerometric grooves decreases. At a critical molding temperature of 170°C, the groove width is stabilized and becomes constant throughout the sample thickness. To characterize the difference in the values of the microhardness of the cured binder in the sample volume, it is proposed to use a dimensionless “coefficient of volume anisotropy,” which can take a positive, negative or zero value. With an increase in the curing temperature of the binder and, accordingly, with an increase in the microhardness of the sample, the coefficient of volume anisotropy decreases, and when the samples are molded at the critical temperature, it turns to zero, which indicates the absence of anisotropy.


Sign in / Sign up

Export Citation Format

Share Document