scholarly journals Epistasis contributes to the genetic buffering of plasma HDL cholesterol in mice

2010 ◽  
Vol 42A (4) ◽  
pp. 228-234 ◽  
Author(s):  
Renhua H. Li ◽  
Gary A. Churchill

Stressful environmental factors, such as a high-fat diet, can induce responses in the expression of genes that act to maintain physiological homeostasis. We observed variation in plasma concentrations of high-density lipoprotein (HDL) cholesterol across inbred mouse strains in response to high dietary fat intake. Several strains, including C57BL/6J, have stable levels of plasma HDL independent of diet, whereas other strains, including DBA2/J, show marked changes in plasma HDL. To explore this phenomenon further, we used publicly available data from a C57BL/6J × DBA/2J intercross to identify genetic factors that associate with HDL under high-fat diet conditions. Our analysis identified an epistatic interaction that plays a role in the buffering of HDL levels in C57BL/6J mice, and we have identified Arl4d as a candidate gene that mediates this effect. Structural modeling further elucidates the interaction of genetic factors that contribute to the robustness of HDL in response to high-fat diet in the C57BL/6J strain.

BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 386 ◽  
Author(s):  
Ayca Dogan ◽  
Peter Lasch ◽  
Christina Neuschl ◽  
Marion K Millrose ◽  
Rudi Alberts ◽  
...  

1994 ◽  
Vol 266 (5) ◽  
pp. R1423-R1428 ◽  
Author(s):  
G. P. Eberhart ◽  
D. B. West ◽  
C. N. Boozer ◽  
R. L. Atkinson

We evaluated insulin sensitivity in epididymal adipocytes from two mouse strains shown to be either sensitive (AKR/J, n = 14) or resistant (SWR/J, n = 12) to the development of obesity when fed a high-fat diet. Half of each strain was fed a chow (CH) diet (12% fat), and half received a sweetened condensed milk (CM) diet (33% fat). After 1 wk, epididymal adipose depots were removed and digested with collagenase, and glucose transport was measured with labeled 2-deoxyglucose. Plasma glucose and insulin were slightly higher in AKR/J than SWR/J mice (glucose: 139.7 vs. 118.8 mg/dl, P < 0.06; insulin: 3.45 vs. 2.99 ng/ml, P < 0.04). One week of high-fat feeding increased adipose depot mass and carcass lipid in both strains to approximately the same extent. Adipocytes from AKR/J mice had greater insulin-stimulated glucose transport compared with SWR/J mice at both submaximal and maximal insulin levels (P < 0.0001). Short-term feeding of the high-fat diet increased AKR/J adipocyte insulin sensitivity but decreased the sensitivity of SWR/J adipocytes to insulin. The differences in adipocyte insulin sensitivity between strains were not explained by differences in adipocyte cell size. Access to the high-fat CM diet for 12 wk increased total dissected adipose depot size by 209% in the AKR/J mice and 82% in the SWR/J mice. These data clearly demonstrate that the two strains differ in adipocyte insulin sensitivity as well as sensitivity to dietary obesity. Increased adipocyte insulin sensitivity could contribute to a predisposition to increase adipose tissue lipid stores with diets high in fat content.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nur Akmal Ishak ◽  
Maznah Ismail ◽  
Muhajir Hamid ◽  
Zalinah Ahmad ◽  
Siti Aisyah Abd Ghafar

Curculigo latifoliafruit is used as alternative sweetener while root is used as alternative treatment for diuretic and urinary problems. The antidiabetic and hypolipidemic activities ofC. latifoliafruit:root aqueous extract in high fat diet (HFD) and 40 mg streptozotocin (STZ) induced diabetic rats through expression of genes involved in glucose and lipid metabolisms were investigated. Diabetic rats were treated withC. latifoliafruit:root extract for 4 weeks. Plasma glucose, insulin, adiponectin, lipid profiles, alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), urea, and creatinine levels were measured before and after treatments. Regulations of selected genes involved in glucose and lipid metabolisms were determined. Results showed the significant (P<0.05) increase in body weight, high density lipoprotein (HDL), insulin, and adiponectin levels and decreased glucose, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), urea, creatinine, ALT, and GGT levels in diabetic rats after 4 weeks treatment. Furthermore,C. latifoliafruit:root extract significantly increased the expression ofIRS-1,IGF-1,GLUT4,PPARα,PPARγ,AdipoR1,AdipoR2,leptin,LPL, andlipasegenes in adipose and muscle tissues in diabetic rats. These results suggest thatC. latifoliafruit:root extract exerts antidiabetic and hypolipidemic effects through altering regulation genes in glucose and lipid metabolisms in diabetic rats.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1410
Author(s):  
Xiao-Yue Yang ◽  
Di-Ying Zhong ◽  
Guo-Liang Wang ◽  
Run-Guang Zhang ◽  
You-Lin Zhang

As a natural active substance that can effectively improve blood lipid balance in the body, hypolipidemic active peptides have attracted the attention of scholars. In this study, the effect of walnut meal peptides (WMP) on lipid metabolism was investigated in rats fed a high-fat diet (HFD). The experimental results show that feeding walnut meal peptides counteracted the high-fat diet-induced increase in body, liver and epididymal fat weight, and reduce the serum concentrations of total cholesterol, triglycerides, and LDL-cholesterol and hepatic cholesterol and triglyceride content. Walnut meal peptides also resulted in increased HDL-cholesterol while reducing the atherosclerosis index (AI). Additionally, the stained pathological sections of the liver showed that the walnut meal peptides reduced hepatic steatosis and damage caused by HFD. Furthermore, walnut meal peptide supplementation was associated with normalization of elevated apolipoprotein (Apo)-B and reduced Apo-A1 induced by the high-fat diet and with favorable changes in the expression of genes related to lipid metabolism (LCAT, CYP7A1, HMGR, FAS). The results indicate that walnut meal peptides can effectively prevent the harmful effects of a high-fat diet on body weight, lipid metabolism and liver fat content in rats, and provide, and provide a reference for the further development of walnut meal functional foods.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Aji Agung Cahyaji

The study aims to determine the effect of ginger (Zingiber officinale) essential oil via inhalation on blood triglyceride, total cholesterol, High Density Lipoprotein (HDL) cholesterol, and Low Density Lipoprotein (LDL) cholesterol level of rats that fed high fat diet. Eighteen albino rats (Rattus norvegicus) were devided into three treatments groups. The treatments were K1 (standard diet) as negative control, K2 (high fat diet) as positive control, and K3 (high fat diet + ginger essential oil inhalation). Blood samples were collected after 5 weeks of treatment period. The result showed the level of triglyceride, cholesterol, and HDL cholesterol at treatment K3 tend to be lower than treatment K2. LDL cholesterol level at treatment K3 show higher result than treatment K2. From the result of this study cocluded that inhalation of ginger essential oil can lowering triglyceride, total cholesterol, and LDL cholesterol level and raise HDL cholesterol level. Keywords: triglyceride, cholesterol, HDL cholesterol, LDL cholesterol, ginger essential oil


2007 ◽  
Vol 102 (6) ◽  
pp. 2369-2378 ◽  
Author(s):  
Karen L. Svenson ◽  
Randy Von Smith ◽  
Phyllis A. Magnani ◽  
Heather R. Suetin ◽  
Beverly Paigen ◽  
...  

The breadth of genetic and phenotypic variation among inbred strains is often underappreciated because assessments include only a limited number of strains. Evaluation of a larger collection of inbred strains provides not only a greater understanding of this variation but collectively mimics much of the variation observed in human populations. We used a high-throughput phenotyping protocol to measure females and males of 43 inbred strains for body composition (weight, fat, lean tissue mass, and bone mineral density), plasma triglycerides, high-density lipoprotein and total cholesterol, glucose, insulin, and leptin levels while mice consumed a high-fat, high-cholesterol diet. Mice were fed a chow diet until they were 6–8 wk old and then fed the high-fat diet for an additional 18 wk. As expected, broad phenotypic diversity was observed among these strains. Significant variation between the sexes was also observed for most traits measured. Additionally, the response to the high-fat diet differed considerably among many strains. By the testing of such a large set of inbred strains for many traits, multiple phenotypes can be considered simultaneously and thereby aid in the selection of certain inbred strains as models for complex human diseases. These data are publicly available in the web-accessible Mouse Phenome Database ( http://www.jax.org/phenome ), an effort established to promote systematic characterization of biochemical and behavioral phenotypes of commonly used and genetically diverse inbred mouse strains. Data generated by this effort builds on the value of inbred mouse strains as a powerful tool for biomedical research.


2014 ◽  
Vol 5 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Pauline Léveillé ◽  
Anne Tarrade ◽  
Charlotte Dupont ◽  
Thibaut Larcher ◽  
Michèle Dahirel ◽  
...  

Alterations to the metabolic environment in utero can have an impact on subsequent female reproductive performance. Here, we used a model of rabbits receiving a high-fat diet (H diet; 7.7% fat and 0.2% cholesterol) or a control diet (C diet; 1.8% fat, no cholesterol) from 10 weeks of age up to mating at 27 weeks and throughout gestation and lactation. At weaning at 5 weeks of age, F1 female offspring were placed on either C or H diet, resulting in a total of four groups C/C, C/H, H/C and H/H diet. Female offspring were mated between 18 and 22 weeks of age and euthanized at 28 days of gestation. A few days before mating and/or just before euthanasia, F1 female rabbits were fasted overnight, weighed, and blood sampled for steroids and biochemistry. Organs were weighed at euthanasia and the ovaries were collected. C/H and H/H F1 offspring had higher cholesterol and high-density lipoprotein plasma concentrations, together with a higher fat mass compared with C/C does, reflecting the effect of the postnatal diet; however, no effect of the antenatal diet was observed on most parameters. The number of primordial, primary and secondary follicles were not different between the groups, but a significantly higher number of atretic follicles was observed in the C/H (P<0.001) and in the H/C (P<0.001) compared with control C/C ovaries, demonstrating both an effect of prenatal and postnatal maternal nutrition. These data indicated that both maternal and postnatal high-fat diet may induce follicular apoptosis; however, in this model, the reproduction was not affected.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1242
Author(s):  
Masakatsu Takashima ◽  
Wataru Tanaka ◽  
Hiroki Matsuyama ◽  
Hayato Tajiri ◽  
Hiroyuki Sakakibara

Quercetin has been shown to have anti-obesity effects, but it is unknown whether these effects can be transmitted from mothers to their progeny. In this study, we investigated whether maternal quercetin consumption during pregnancy has a protective effect on high-fat diet–induced hyper lipid levels and overweight in progeny. Female mice consumed a control diet or a diet containing 1.0% quercetin during breeding. The male progeny were then divided into four groups that were (1) sacrificed at postnatal day 3; (2) born to dams fed the control diet and also fed the control diet (C-C), (3) born to dams fed the control diet and then fed a 30% high-fat diet (C-HF), or (4) born to dams fed the Q-diet and then fed the HF diet (Q-HF). Maternal consumption of quercetin did not affect body weight or blood lipid parameters in either dams or neonates at postnatal day 3. After 13 weeks, the Q-HF group exhibited greater body and liver weights, and higher blood cholesterol levels than the C-HF group. However, the total cholesterol/ high density lipoprotein (HDL)-cholesterol ratios in the Q-HF and C-C groups remained similar. In conclusion, maternal quercetin consumption does not appear to protect the next generation from high-fat diet–induced hyper cholesterol level in the blood and liver, and consequently overweight, but may help regulate the total cholesterol/HDL-cholesterol ratio.


2013 ◽  
Vol 305 (12) ◽  
pp. E1495-E1511 ◽  
Author(s):  
Emily K. Sims ◽  
Masayuki Hatanaka ◽  
David L. Morris ◽  
Sarah A. Tersey ◽  
Tatsuyoshi Kono ◽  
...  

Impaired glucose tolerance (IGT) and type 2 diabetes (T2DM) are polygenic disorders with complex pathophysiologies; recapitulating them with mouse models is challenging. Despite 70% genetic homology, C57BL/6J (BL6) and C57BLKS/J (BLKS) inbred mouse strains differ in response to diet- and genetic-induced obesity. We hypothesized these differences would yield insight into IGT and T2DM susceptibility and response to pharmacological therapies. To this end, male 8-wk-old BL6 and BLKS mice were fed normal chow (18% kcal from fat), high-fat diet (HFD; 42% kcal from fat), or HFD supplemented with the PPARγ agonist pioglitazone (PIO; 140 mg PIO/kg diet) for 16 wk. Assessments of body composition, glucose homeostasis, insulin production, and energy metabolism, as well as histological analyses of pancreata were undertaken. BL6 mice gained weight and adiposity in response to HFD, leading to peripheral insulin resistance that was met with increased β-cell proliferation and insulin production. By contrast, BLKS mice responded to HFD by restricting food intake and increasing activity. These behavioral responses limited weight gain and protected against HFD-induced glucose intolerance, which in this strain was primarily due to β-cell dysfunction. PIO treatment did not affect HFD-induced weight gain in BL6 mice, and decreased visceral fat mass, whereas in BLKS mice PIO increased total fat mass without improving visceral fat mass. Differences in these responses to HFD and effects of PIO reflect divergent human responses to a Western lifestyle and underscore the careful consideration needed when choosing mouse models of diet-induced obesity and diabetes treatment.


2021 ◽  
Author(s):  
Alexis Maximilien Bachmann ◽  
Jean-David Horacio Morel ◽  
Gaby El Alam ◽  
Sandra Rodríguez-López ◽  
Tanes Imamura de lima ◽  
...  

Overweight and obesity are increasingly common public health issues worldwide, leading to a wide range of diseases from metabolic syndrome to steatohepatitis and cardiovascular diseases. While the increase in the prevalence of obesity is partly attributable to changes in lifestyle (i.e. increased sedentarity and changes in eating behaviour), the metabolic and clinical impacts of these obesogenic conditions varies between sexes and genetic backgrounds. The conception of personalised treatments of obesity and its complications require a thorough understanding of the diversity of responses to conditions such as high-fat diet intake. By analysing nine genetically diverse mouse strains, we show that much like humans, mice respond to high-fat diet in a genetic- and sex-dependent manner. Physiological and molecular responses to high-fat diet are associated with expression of genes involved in immunity and mitochondrial function. Finally, we find that mitochondrial function may explain part of the diversity of physiological responses. By exploring the complex interactions between genetics and metabolic phenotypes via gene expression and molecular traits, we shed light on the importance of genetic background and sex in determining metabolic outcomes. In addition to providing the community with an extensive resource for optimizing future experiments, our work serves as an exemplary design for more generalizable translational studies.


Sign in / Sign up

Export Citation Format

Share Document