Maternal high-fat diet induces follicular atresia but does not affect fertility in adult rabbit offspring

2014 ◽  
Vol 5 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Pauline Léveillé ◽  
Anne Tarrade ◽  
Charlotte Dupont ◽  
Thibaut Larcher ◽  
Michèle Dahirel ◽  
...  

Alterations to the metabolic environment in utero can have an impact on subsequent female reproductive performance. Here, we used a model of rabbits receiving a high-fat diet (H diet; 7.7% fat and 0.2% cholesterol) or a control diet (C diet; 1.8% fat, no cholesterol) from 10 weeks of age up to mating at 27 weeks and throughout gestation and lactation. At weaning at 5 weeks of age, F1 female offspring were placed on either C or H diet, resulting in a total of four groups C/C, C/H, H/C and H/H diet. Female offspring were mated between 18 and 22 weeks of age and euthanized at 28 days of gestation. A few days before mating and/or just before euthanasia, F1 female rabbits were fasted overnight, weighed, and blood sampled for steroids and biochemistry. Organs were weighed at euthanasia and the ovaries were collected. C/H and H/H F1 offspring had higher cholesterol and high-density lipoprotein plasma concentrations, together with a higher fat mass compared with C/C does, reflecting the effect of the postnatal diet; however, no effect of the antenatal diet was observed on most parameters. The number of primordial, primary and secondary follicles were not different between the groups, but a significantly higher number of atretic follicles was observed in the C/H (P<0.001) and in the H/C (P<0.001) compared with control C/C ovaries, demonstrating both an effect of prenatal and postnatal maternal nutrition. These data indicated that both maternal and postnatal high-fat diet may induce follicular apoptosis; however, in this model, the reproduction was not affected.

Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 4749-4761 ◽  
Author(s):  
S. A. Lanham ◽  
F. R. Cagampang ◽  
R. O. C. Oreffo

Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K–dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific– protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site–specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet–fed female offspring from high-fat diet–fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.


2017 ◽  
Vol 44 (2) ◽  
pp. 657-670 ◽  
Author(s):  
Yongjian Qi ◽  
Hanwen Luo ◽  
Shuwei Hu ◽  
Yimeng Wu ◽  
Jacques Magdalou ◽  
...  

Background/Aims: Prenatal ethanol exposure (PEE) could induce intrauterine programming of hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolism, resulting in intrauterine growth retardation and susceptibility to adult hypercholesterolemia in offspring. This study aimed to analyse the effects and interactions of PEE, a post-weaning high-fat diet (HFD) and gender on the occurrence of adult hypercholesterolemia in offspring rats. Methods: Wistar female rats were treated with ethanol (4 g/kg.d) at gestational days 11-20. The offspring were given a normal diet or HFD after weaning, and the blood cholesterol metabolism phenotype and expression of hepatic cholesterol metabolism related genes were detected in 24-week-old offspring. Furthermore, the interactions among PEE, HFD, and gender on hypercholesterolemia occurrence were analysed. Results: PEE increased the serum total cholesterol (TCH) and low-density lipoprotein-cholesterol (LDL-C) levels and decreased the serum high-density lipoprotein-cholesterol (HDL-C) level in adult offspring rats; the changes in female offspring were greater than those in males. At the same time, the mRNA expression levels of hepatic cholesterol metabolic enzymes (apolipoprotein B (ApoB) and 7α-hydroxylase (CYP7A1))—were increased, while the mRNA expression levels of the scavenger receptor B1 (SR-B1) and LDL receptor (LDLR) were decreased. Furthermore, a three-way ANOVA showed there were interactions among PEE, post-weaning HFD and gender. For PEE offspring, a post-weaning HFD aggravated the elevated hepatic ApoB and CYP7A1 expression and reduced SR-B1 and LDLR expression; the changes in hepatic SR-B1 and CYP7A1 expression were greater in female HFD rats than in males. Conclusion: Our findings suggest that a post-weaning HFD could aggravate offspring hypercholesterolemia caused by PEE and that this mechanism might be associated with hepatic cholesterol metabolic disorders that are aggravated by a post-weaning HFD; hepatic cholesterol metabolism was more sensitive to neuroendocrine metabolic alterations by PEE and a post-weaning HFD in the female offspring than in the male offspring.


2010 ◽  
Vol 42A (4) ◽  
pp. 228-234 ◽  
Author(s):  
Renhua H. Li ◽  
Gary A. Churchill

Stressful environmental factors, such as a high-fat diet, can induce responses in the expression of genes that act to maintain physiological homeostasis. We observed variation in plasma concentrations of high-density lipoprotein (HDL) cholesterol across inbred mouse strains in response to high dietary fat intake. Several strains, including C57BL/6J, have stable levels of plasma HDL independent of diet, whereas other strains, including DBA2/J, show marked changes in plasma HDL. To explore this phenomenon further, we used publicly available data from a C57BL/6J × DBA/2J intercross to identify genetic factors that associate with HDL under high-fat diet conditions. Our analysis identified an epistatic interaction that plays a role in the buffering of HDL levels in C57BL/6J mice, and we have identified Arl4d as a candidate gene that mediates this effect. Structural modeling further elucidates the interaction of genetic factors that contribute to the robustness of HDL in response to high-fat diet in the C57BL/6J strain.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1242
Author(s):  
Masakatsu Takashima ◽  
Wataru Tanaka ◽  
Hiroki Matsuyama ◽  
Hayato Tajiri ◽  
Hiroyuki Sakakibara

Quercetin has been shown to have anti-obesity effects, but it is unknown whether these effects can be transmitted from mothers to their progeny. In this study, we investigated whether maternal quercetin consumption during pregnancy has a protective effect on high-fat diet–induced hyper lipid levels and overweight in progeny. Female mice consumed a control diet or a diet containing 1.0% quercetin during breeding. The male progeny were then divided into four groups that were (1) sacrificed at postnatal day 3; (2) born to dams fed the control diet and also fed the control diet (C-C), (3) born to dams fed the control diet and then fed a 30% high-fat diet (C-HF), or (4) born to dams fed the Q-diet and then fed the HF diet (Q-HF). Maternal consumption of quercetin did not affect body weight or blood lipid parameters in either dams or neonates at postnatal day 3. After 13 weeks, the Q-HF group exhibited greater body and liver weights, and higher blood cholesterol levels than the C-HF group. However, the total cholesterol/ high density lipoprotein (HDL)-cholesterol ratios in the Q-HF and C-C groups remained similar. In conclusion, maternal quercetin consumption does not appear to protect the next generation from high-fat diet–induced hyper cholesterol level in the blood and liver, and consequently overweight, but may help regulate the total cholesterol/HDL-cholesterol ratio.


Author(s):  
Jinlai Yang ◽  
Liangru Wu ◽  
Huimin Yang ◽  
Yanhong Pan

Bamboo shoots are a renewable and abundant biomass containing cellulose, hemicellulose, and lignin. Although many studies have explored the applications of each of these components in the preparation of biochemicals and biopolymers, few studies have evaluated the utility of these components as a dietary fiber supplement. In this study, a powder consisting of the main components of bamboo shoots (cellulose, hemicellulose, and lignin) was prepared from fresh Phyllostachys praecox shoots and characterized by scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. To evaluate the potential utility of these components as a dietary fiber supplement, we conducted an experiment in which this powder was supplemented in the diet of mice for 7 weeks. The experiment included three diet groups (n = 10/group): a low-fat control diet (LFC), high-fat diet (HFD), and high-fat diet with bamboo shoot powder (HFBSP). Compared with HFD mice, the body weights of LFC and HFBSP mice were lower, indicating that the addition of bamboo shoot powder could reduce the weight gain associated with the HFD. Bamboo shoot powder supplementation could also reduce the levels of triglycerides (TG), blood glucose (GLU), total cholesterol (CHOL), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C) in HFD mice. The fat histology images indicated that obesity was alleviated in HFBSP mice, and the liver histology images indicated that the addition of bamboo shoot powder to the HFD could reduce the risk of fatty liver disease. The addition of bamboo shoot powder to the HFD might also improve the gut microbiota of mice. Thus, the major components of bamboo shoot powder (cellulose, hemicellulose, and lignin) could be used as beneficial natural additives in the food industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jin Han Yang ◽  
Thi Thu Tra Tran ◽  
Van Viet Man Le

In this study, the hepatoprotective and hypolipidemic effects of high-polydextrose snack food on Swiss albino mice were investigated. The mice were randomly divided into three groups: control diet, high-fat diet, and high-fat and fiber diet groups. Addition of high-polydextrose snack to the high-fat diet resulted in significant reduction in the liver weight, the accumulation of lipid droplets in liver, and the liver damage of hyperlipidemic mice in comparison with the high-fat diet. The high-polydextrose snack also decreased the content of total triglyceride, cholesterol, and low-density lipoprotein cholesterol as well as the alanine aminotransferase and aspartate aminotransferase activities in the mice serum. In addition, the high-polydextrose snack significantly increased the high-density lipoprotein cholesterol content of the hyperlipidemic mice. Consequently, use of high-polydextrose snack generated hepatoprotective and hypolipidemic effects on hyperlipidemic mice.


2019 ◽  
Vol 89 (1-2) ◽  
pp. 45-54
Author(s):  
Akemi Suzuki ◽  
André Manoel Correia-Santos ◽  
Gabriela Câmara Vicente ◽  
Luiz Guillermo Coca Velarde ◽  
Gilson Teles Boaventura

Abstract. Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (−31%), HFG (−33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (−10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


Author(s):  
Sihoon Park ◽  
Jae-Joon Lee ◽  
Hye-Won Shin ◽  
Sunyoon Jung ◽  
Jung-Heun Ha

Soybean koji refers to steamed soybeans inoculated with microbial species. Soybean fermentation improves the health benefits of soybeans. Obesity is a serious health concern owing to its increasing incidence rate and high association with other metabolic diseases. Therefore, we investigated the effects of soybean and soybean koji on high-fat diet-induced obesity in rats. Five-week-old male Sprague-Dawley rats were randomly divided into four groups (n = 8/group) as follows: (1) regular diet (RD), (2) high-fat diet (HFD), (3) HFD + steamed soybean (HFD+SS), and (4) HFD + soybean koji (HFD+SK). SK contained more free amino acids and unsaturated fatty acids than SS. In a rat model of obesity, SK consumption significantly alleviated the increase in weight of white adipose tissue and mRNA expression of lipogenic genes, whereas SS consumption did not. Both SS and SK reduced serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels, and increased high-density lipoprotein cholesterol levels. SS and SK also inhibited lipid accumulation in the liver and white adipose tissue and reduced adipocyte size. Although both SS and SK could alleviate HFD-induced dyslipidemia, SK has better anti-obesity effects than SS by regulating lipogenesis. Overall, SK is an excellent functional food that may prevent obesity.


Sign in / Sign up

Export Citation Format

Share Document