Control of Calcium Influx in Cells Without Action Potentials

Physiology ◽  
1988 ◽  
Vol 3 (6) ◽  
pp. 244-249
Author(s):  
DV Gallacher

A common effect of neurotransmitters and hormones that stimulate the metabolism of inositol lipids is the ability to increase the permeability of membranes to Ca2+. This effect occurs at surface membranes by the influx of Ca2+ from extracellular to intracellular fluid and at internal membranes by release of Ca2+ sequestered in intracellular organelles. Recent evidence suggests that it is the inositol polyphosphate products of lipid metabolism that regulate Ca2+ fluxes across both internal and cell surface membranes.

2020 ◽  
Vol 11 (16) ◽  
pp. 4221-4225 ◽  
Author(s):  
Jing Qi ◽  
Weishuo Li ◽  
Xiaoling Xu ◽  
Feiyang Jin ◽  
Di Liu ◽  
...  

Cell-surface polymerization of anti-CD20 aptamer modified macromer to induce CD20 receptor clustering, and effectively initiate the apoptotic signals in cells.


2002 ◽  
Vol 13 (1) ◽  
pp. 96-109 ◽  
Author(s):  
Sharron X. Lin ◽  
Gregg G. Gundersen ◽  
Frederick R. Maxfield

A significant fraction of internalized transferrin (Tf) concentrates in the endocytic recycling compartment (ERC), which is near the microtubule-organizing center in many cell types. Tf then recycles back to the cell surface. The mechanisms controlling the localization, morphology, and function of the ERC are not fully understood. We examined the relationship of Tf trafficking with microtubules (MTs), specifically the subset of stable, detyrosinated Glu MTs. We found some correlation between the level of stable Glu MTs and the distribution of the ERC; in cells with low levels of Glu MTs concentrated near to the centriole, the ERC was often tightly clustered, whereas in cells with higher levels of Glu MTs throughout the cell, the ERC was more dispersed. The clustered ERC in Chinese hamster ovary cells became dispersed when the level of Glu MTs was increased with taxol treatment. Furthermore, in a temperature-sensitive Chinese hamster ovary cell line (B104-5), the cells had more Glu MTs when the ERC became dispersed at elevated temperature. Microinjecting purified anti-Glu tubulin antibody into B104-5 cells at elevated temperature induced the redistribution of the ERC to a tight cluster. Microinjection of anti-Glu tubulin antibody slowed recycling of Tf to the cell surface without affecting Tf internalization or delivery to the ERC. Similar inhibition of Tf recycling was caused by microinjecting anti-kinesin antibody. These results suggest that stable Glu MTs and kinesin play a role in the organization of the ERC and in facilitating movement of vesicles from the ERC to the cell surface.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Troy Hendrickson ◽  
William Perez ◽  
Vincent Provasek ◽  
Francisco J Altamirano

Patients with Autosomal Dominant Polycystic Kidney disease (ADPKD) have multiple cardiovascular manifestations, including increased susceptibility to arrhythmias. Mutations in polycystin-1 (PC1) encoding gene accounts for 85% cases of ADPKD, whereas mutations in polycystin-2 (PC2) only accounts for 15%. In kidney cells, PC1 interacts with PC2 to form a protein complex at the primary cilia to regulate calcium influx via PC2. However, cardiomyocytes are non-ciliated cells and the role of both PC1 and PC2 in atrial cardiomyocytes remains unknown. We have previously demonstrated that PC1 regulates action potentials and calcium handling to fine-tune ventricular cardiomyocyte contraction. Here, we hypothesize that PC1 regulates action potentials and calcium handling in atrial cardiomyocytes independent of PC2 actions. To test this hypothesis, we differentiated human induced pluripotent stem cells (iPSC) into atrial cardiomyocytes (iPSC-aCM) using previously published protocols. To determine the contribution of PC1/PC2 in atrial excitation-contraction coupling, protein expression was knocked down utilizing specific siRNA constructs, for each protein, or a universal control siRNA transfected using lipofectamine RNAiMAX. We measured action potentials using the potentiometric dye FluoVolt and intracellular calcium with Fura-2 AM or Fluo-4. Changes in fluorescence were monitored using a multiwavelength IonOptix system. iPSC-aCM were paced at 2 Hz to synchronize the beating pattern using field electrical stimulation. Our data shows that PC1 ablation significantly decreased action potential duration at 50% and 80% of repolarization, by 24% and 23%, respectively. Moreover, we observed that PC1 knockdown significantly reduced calcium transient amplitude elicited by field electrical stimulation without changes in calcium transient decay. Interestingly, PC2 knockdown did not modify calcium transients in atrial cardiomyocytes (iPSC-aCM). Our data suggest that PC1 regulates atrial excitation-contraction coupling independent of PC2 actions. This study warrants further investigation into atrial dysfunction in ADPKD patients with PC1 mutations.


2016 ◽  
Vol 310 (9) ◽  
pp. F821-F831 ◽  
Author(s):  
Da Xu ◽  
Haoxun Wang ◽  
Qiang Zhang ◽  
Guofeng You

Human organic anion transporter 1 (hOAT1) expressed at the membrane of the kidney proximal tubule cells mediates the body disposition of a diverse array of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and antiinflammatories. Therefore, understanding the regulation of hOAT1 will provide significant insights into kidney function and dysfunction. We previously established that hOAT1 transport activity is inhibited by activation of protein kinase C (PKC) through accelerating hOAT1 internalization from cell surface into intracellular endosomes and subsequent degradation. We further established that PKC-induced hOAT1 ubiquitination is an important step preceding hOAT1 internalization. In the current study, we identified two closely related E3 ubiquitin ligases, neural precursor cell expressed, developmentally downregulated 4-1 and 4-2 (Nedd4-1 and Nedd4-2), as important regulators for hOAT1: overexpression of Nedd4-1 or Nedd4-2 enhanced hOAT1 ubiquitination, reduced the hOAT1 amount at the cell surface, and suppressed hOAT1 transport activity. In further exploring the relationship among PKC, Nedd4-1, and Nedd4-2, we discovered that PKC-dependent changes in hOAT1 ubiquitination, expression, and transport activity were significantly blocked in cells transfected with the ligase-dead mutant of Nedd4-2 (Nedd4-2/C821A) or with Nedd4-2-specific siRNA to knockdown endogenous Nedd4-2 but not in cells transfected with the ligase-dead mutant of Nedd4-1 (Nedd4-1/C867S) or with Nedd4-1-specific siRNA to knockdown endogenous Nedd4-1. In conclusion, this is the first demonstration that both Nedd4-1 and Nedd4-2 are important regulators for hOAT1 ubiquitination, expression, and function. Yet they play distinct roles, as Nedd4-2 but not Nedd4-1 is a critical mediator for PKC-regulated hOAT1 ubiquitination, expression, and transport activity.


1984 ◽  
Vol 68 (1) ◽  
pp. 83-94
Author(s):  
C.J. Flickinger

The production, transport, and disposition of material labelled with [3H]mannose were studied in microsurgically enucleated and control amoebae. Cells were injected with the precursor and samples were prepared for electron-microscope radioautography at intervals, up to 24 h later. Control cells showed heavy labelling of the rough endoplasmic reticulum and the Golgi apparatus at early intervals after injection. Later, labelling of groups of small vesicles increased, and the percentage of grains over the cell surface peaked 12 h after administration of the precursor. Two major changes were detected in enucleate amoebae. First, the kinetics of labelling of cell organelles with [3H]mannose were altered in the absence of the nucleus. The Golgi apparatus and cell surface both displayed maximal labelling at later intervals in enucleates, and the percentage of grains over the rough endoplasmic reticulum varied less with time in enucleated than in control cells. Second, the distribution of radioactivity was altered. A greater percentage of grains was associated with lysosomes in enucleates than in control cells. The change in the kinetics of labelling of the endoplasmic reticulum, Golgi apparatus and cell surface indicates that intracellular transport of surface material was slower in the absence of the nucleus. It is suggested that this is related to the decreased motility of enucleate cells.


1997 ◽  
Vol 110 (1) ◽  
pp. 11-21 ◽  
Author(s):  
M. Glogauer ◽  
P. Arora ◽  
G. Yao ◽  
I. Sokholov ◽  
J. Ferrier ◽  
...  

The actin-dependent sensory and response elements of stromal cells that are involved in mechanical signal transduction are poorly understood. To study mechanotransduction we have described previously a collagen-magnetic bead model in which application of well-defined forces to integrins induces an immediate (< 1 second) calcium influx. In this report we used the model to determine the role of calcium ions and tyrosine-phosphorylation in the regulation of force-mediated actin assembly and the resulting change in membrane rigidity. Collagen-beads were bound to cells through the focal adhesion-associated proteins talin, vinculin, alpha 2-integrin and beta-actin, indicating that force application was mediated through cytoskeletal elements. When force (2 N/m2) was applied to collagen beads, confocal microscopy showed a marked vertical extension of the cell which was counteracted by an actin-mediated retraction. Immunoblotting showed that force application induced F-actin accumulation at the bead-membrane complex but vinculin, talin and alpha 2-integrin remained unchanged. Atomic force microscopy showed that membrane rigidity increased 6-fold in the vicinity of beads which had been exposed to force. Force also induced tyrosine phosphorylation of several cytoplasmic proteins including paxillin. The force-induced actin accumulation was blocked in cells loaded with BAPTA/AM or in cells preincubated with genistein, an inhibitor of tyrosine phosphorylation. Repeated force application progressively inhibited the amplitude of force-induced calcium ion flux. As force-induced actin reorganization was dependent on calcium and tyrosine phosphorylation, and as progressive increases of filamentous actin in the submembrane cortex were correlated with increased membrane rigidity and dampened calcium influx, we suggest that cortical actin regulates stretch-activated cation permeable channel activity and provides a desensitization mechanism for cells exposed to repeated long-term mechanical stimuli. The actin response may be cytoprotective since it counteracts the initial force-mediated membrane extension and potentially strengthens cytoskeletal integrity at force-transfer points.


1999 ◽  
Vol 112 (10) ◽  
pp. 1497-1509
Author(s):  
M.A. Messerli ◽  
G. Danuser ◽  
K.R. Robinson

Fluxes of H+, K+ and Ca2+ were measured with self-referencing ion-selective probes, near the plasma membrane of growing Lilium longiflorum pollen tubes. Measurements from three regions around short, steady-growing tubes showed small, steady influx of H+ over the distal 40 microm and a region of the tube within 50–100 microm of the grain with larger magnitude efflux from the grain. K+ fluxes were immeasurable in short tubes. Measurements of longer tubes that were growing in a pulsatile manner revealed a pulsatile influx of both H+ and K+ at the growing tip. The average fluxes at the cell surface during the peaks of the H+ and K+ pulses were 489+/-81 and 688+/-144 pmol cm-2 second-1, respectively. Growth was measured by tracking the pollen tips with a computer vision system that achieved a spatial resolution of approximately 1/10 pixel. The high spatial resolution enabled the detection of growth, and thus the changes in growth rates, with a temporal sampling rate of 1 frame/second. These data show that the H+ and K+ pulses have a phase lag of 103+/-9 and 100+/-11 degrees, respectively, with respect to the growth pulses. Calcium fluxes were also measured in growing tubes. During steady growth, the calcium influx was relatively steady. When pulsatile growth began, the basal Ca2+ influx decreased and a pulsatile component appeared, superimposed on the reduced basal Ca2+ flux. The peaks of the Ca2+ pulses at the cell surface averaged 38.4+/-2.5 pmol cm-2 second-1. Longer tubes had large pulsatile Ca2+ fluxes with smaller baseline fluxes. The Ca2+ influx pulses had a phase lag of 123+/-9 degrees with respect to the growth pulses.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4316-4321 ◽  
Author(s):  
T Szekeres ◽  
M Fritzer ◽  
H Strobl ◽  
K Gharehbaghi ◽  
G Findenig ◽  
...  

Increased ribonucleotide reductase (RR) activity has been linked with malignant transformation and tumor cell growth. Therefore, this enzyme is considered to be an excellent target for cancer chemotherapy. We have examined the effects of a newly patented RR inhibitor, trimidox (3,4,5-trihydroxybenzohydroxamidoxime). Trimidox inhibited the growth of human promyelocytic leukemia HL-60 cells with an IC50 of 35 mumol/L. Incubation of HL-60 cells with 50 mumol/L trimidox for 24 hours decreased deoxyguanosine triphosphate (dGTP) and deoxycytidine triphosphate (dCTP) pools to 24% and 39% of control values, respectively. Incubation of HL-60 cells with 20 to 80 mumol/L trimidox even up to a period of 4 days did not alter the distribution of cells in different phases of cell cycle. Sequential incubation of HL-60 cells with trimidox (25 mumol/L) for 24 hours and then with 10 mumol/L tiazofurin (an inhibitor of inosine monophosphate dehydrogenase) for 4 days produced synergistic growth inhibitory activity, and the cell number decreased to 16% of untreated controls. When differentiation- linked cell surface marker expressions were determined in cells treated with trimidox and tiazofurin, a significantly increased fluorescence intensity was observed for the CD 11b (2.9-fold). CD 33 (1.9-fold), and HLA-D cell surface antigens. Expression of the transferrin receptor (CD71) increased 7.3-fold in cells treated with both agents, compared with untreated controls. Our results suggest that trimidox in combination with tiazofurin might be useful in the treatment of leukemia.


1987 ◽  
Vol 105 (2) ◽  
pp. 679-689 ◽  
Author(s):  
K Sandvig ◽  
S Olsnes ◽  
O W Petersen ◽  
B van Deurs

Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin-horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demonstrated that transferrin receptors were present in approximately 75% of the coated pits both in control cells and in cells with acidified cytosol. The data therefore indicate that the reason for the reduced endocytic uptake of transferrin at internal pH less than 6.5 is an inhibition of the pinching off of coated vesicles. In contrast, acidification of the cytosol had only little effect on the uptake of ricin and the fluid phase marker lucifer yellow. Ricin endocytosed by cells with acidified cytosol exhibited full toxic effect on the cells. Although the pathway of this uptake in acidified cells remains uncertain, some coated pits may still be involved. However, the data are also consistent with the possibility that an alternative endocytic pathway involving smooth (uncoated) pits exists.


2000 ◽  
Vol 74 (4) ◽  
pp. 1900-1907 ◽  
Author(s):  
Allison Abendroth ◽  
Barry Slobedman ◽  
Eunice Lee ◽  
Elizabeth Mellins ◽  
Mark Wallace ◽  
...  

ABSTRACT We sought to investigate the effects of varicella-zoster virus (VZV) infection on gamma interferon (IFN-γ)-stimulated expression of cell surface major histocompatibility complex (MHC) class II molecules on human fibroblasts. IFN-γ treatment induced cell surface MHC class II expression on 60 to 86% of uninfected cells, compared to 20 to 30% of cells which had been infected with VZV prior to the addition of IFN-γ. In contrast, cells that were treated with IFN-γ before VZV infection had profiles of MHC class II expression similar to those of uninfected cell populations. Neither IFN-γ treatment nor VZV infection affected the expression of transferrin receptor (CD71). In situ and Northern blot hybridization of MHC II (MHC class II DR-α) RNA expression in response to IFN-γ stimulation revealed that MHC class II DR-α mRNA accumulated in uninfected cells but not in cells infected with VZV. When skin biopsies of varicella lesions were analyzed by in situ hybridization, MHC class II transcripts were detected in areas around lesions but not in cells that were infected with VZV. VZV infection inhibited the expression of Stat 1α and Jak2 proteins but had little effect on Jak1. Analysis of regulatory events in the IFN-γ signaling pathway showed that VZV infection inhibited transcription of interferon regulatory factor 1 and the MHC class II transactivator. This is the first report that VZV encodes an immunomodulatory function which directly interferes with the IFN-γ signal transduction via the Jak/Stat pathway and enables the virus to inhibit IFN-γ induction of cell surface MHC class II expression. This inhibition of MHC class II expression on VZV-infected cells in vivo may transiently protect cells from CD4+ T-cell immune surveillance, facilitating local virus replication and transmission during the first few days of cutaneous lesion formation.


Sign in / Sign up

Export Citation Format

Share Document