Role of cholecystokinin and opioid peptides in control of food intake

1986 ◽  
Vol 66 (1) ◽  
pp. 172-234 ◽  
Author(s):  
C. A. Baile ◽  
C. L. McLaughlin ◽  
M. A. Della-Fera

Of the many factors that influence food intake, there is strong evidence that opioid and CCK peptides, which stimulate feeding and elicit satiety, respectively, are important components that may act in concert to regulate energy balance. Cholecystokinin peptides have been isolated in both the brain and gastrointestinal tract, and changes in concentration in the brain and in plasma have been shown to vary with feeding. Peripherally injected CCK has been shown to elicit satiety in many species, including humans, an effect that may be mediated in the CNS via the vagus. In several species, most notably the sheep, direct injection into the CSF potently decreases food intake. Questions remaining regarding the role of CCK peptides in eliciting satiety include the sites and mechanisms of action. It is unknown whether CCK acts directly on receptors, indirectly on some other parameter, or as a neurotransmitter. Although opioid peptides have also been localized in portions of both the periphery and brain, a specific physiological role for their presence has not yet been determined. Opioid peptides from three families--endorphins, enkephalins, and dynorphins--have been shown to stimulate feeding in various species. They have been active at several opioid receptor types in the CNS, but there is limited evidence to suggest they affect food intake when administered peripherally. In contrast, peripheral injection of opiate antagonists has effectively decreased food intake, an observation that led to the original hypothesis that opioids were involved in the hunger component in the control of food intake and that excess concentrations might be involved in the development of obesity. An increasing body of evidence supports the concept that opioid and CCK peptides may interact to control food intake, but the evidence is more suggestive than conclusive.

Author(s):  
Lorenzo Cangiano ◽  
Sabrina Asteriti

AbstractIn the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.


2018 ◽  
Vol 107 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Yuko Maejima ◽  
Shoko Yokota ◽  
Katsuhiko Nishimori ◽  
Kenju Shimomura

Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.


2020 ◽  
Vol 21 (7) ◽  
pp. 2568
Author(s):  
Ujendra Kumar ◽  
Sneha Singh

Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.


1993 ◽  
Vol 265 (6) ◽  
pp. R1387-R1391
Author(s):  
M. M. Meguid ◽  
J. L. Beverly ◽  
Z. J. Yang ◽  
J. R. Gleason ◽  
R. A. Meguid ◽  
...  

To determine whether brain glycogen concentrations change during parenteral nutrition, Fischer 344 rats with jugular vein catheters received 0.9 N saline or parenteral nutrition providing 100% of daily calories (PN-100). Rats were killed after 4 days of PN-100 and serially after PN-100 was stopped. Food intake decreased during PN-100 to approximately 15% of control, but total kilocalories eaten and infused over the 4-day PN-100 period was approximately 130% of control. Food intake of PN-100 rats remained low for 3-4 days post-PN-100. At the end of the 4-day PN-100 period, plasma glucose and insulin (P = 0.01) and whole brain glycogen (P < 0.005) were higher than but similar to control within 24 h of PN-100 being stopped. When PN-100 rats were not allowed to eat during the infusion period, plasma glucose was lower, plasma insulin higher, and brain glycogen content the same as in control rats after 4 days of PN-100. The increased brain glycogen was the likely consequence of the hyperglycemia and hyperinsulinemia during PN-100 and was not causally associated with the reduced food intake either during or immediately after PN-100.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3101-3109 ◽  
Author(s):  
Andrea Peier ◽  
Jennifer Kosinski ◽  
Kimberly Cox-York ◽  
Ying Qian ◽  
Kunal Desai ◽  
...  

Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2−/−) mice. Nmur2−/− mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2−/− mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2−/− mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2−/− mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.


2005 ◽  
Vol 64 (2) ◽  
pp. 213-216 ◽  
Author(s):  
C. W. le Roux ◽  
S. R. Bloom

Obesity is taking on pandemic proportions. The laws of thermodynamics, however, remain unchanged, as energy will be stored if less energy is expended than consumed; the storage is usually in the form of adipose tissue. Several neural, humeral and psychological factors control the complex process known as appetite. Recently, a close evolutionary relationship between the gut and brain has become apparent. The gut hormones regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. Peptide YY (PYY) is a thirty-six amino acid peptide related to neuropeptide Y (NPY) and is co-secreted with glucagon-like peptide 1. Produced by the intestinal L-cells, the highest tissue concentrations of PYY are found in distal segments of the gastrointestinal tract, although it is present throughout the gut. Following food intake PYY is released into the circulation. PYY concentrations are proportional to meal energy content and peak plasma levels appear postprandially after 1 h. PYY3-36 is a major form of PYY in both the gut mucosal endocrine cells and the circulation. Peripheral administration of PYY3-36 inhibits food intake for several hours in both rodents and man. The binding of PYY3-36 to the Y2 receptor leads to an inhibition of the NPY neurones and a possible reciprocal stimulation of the pro-opiomelanocortin neurones. Thus, PYY3-36 appears to control food intake by providing a powerful feedback on the hypothalamic circuits. The effect on food intake has been demonstrated at physiological concentrations and, therefore, PYY3-36 may be important in the everyday regulation of food intake.


2007 ◽  
Vol 292 (1) ◽  
pp. R575-R585 ◽  
Author(s):  
Éva Szentirmai ◽  
Levente Kapás ◽  
James M. Krueger

Ghrelin, a gut-brain peptide, is best known for its role in the stimulation of feeding and growth hormone release. In the brain, orexin, neuropeptide Y (NPY), and ghrelin are parts of a food intake regulatory circuit. Orexin and NPY are also implicated in maintaining wakefulness. Previous experiments in our laboratory revealed that intracerebroventricular injections of ghrelin induce wakefulness in rats. To further elucidate the possible role of ghrelin in the regulation of arousal, we studied the effects of microinjections of ghrelin into hypothalamic sites, which are implicated in the regulation of feeding and sleep, such as the lateral hypothalamus (LH), medial preoptic area (MPA), and paraventricular nucleus (PVN) on sleep in rats. Sleep responses, motor activity, and food intake after central administration of 0.04, 0.2, or 1 μg (12, 60, or 300 pmol) ghrelin were recorded. Microinjections of ghrelin into the LH had strong wakefulness-promoting effects lasting for 2 h. Wakefulness was also stimulated by ghrelin injection into the MPA and PVN; the effects were confined to the first hour after the injection. Ghrelin's non-rapid-eye-movement sleep-suppressive effect was accompanied by attenuation in the electroencephalographic (EEG) slow-wave activity and changes in the EEG power spectrum. Food consumption was significantly stimulated after microinjections of ghrelin into each hypothalamic site. Together, these results are consistent with the hypothesis that forebrain ghrelinergic mechanisms play a role in the regulation of vigilance, possibly through activating the components of the food intake- and arousal-promoting network formed by orexin and NPY.


2021 ◽  
Vol 22 (1) ◽  
pp. 67-83
Author(s):  
Duraid A.Abbas ◽  
O.M.S. Al—Shaha,

Eighteen rats were divided into three equal groups. The first group was closed orally with quassin, the second group was dosed with quassin after the gut flora were suppressed by difierent antibiotics, and the third group was served as a control. Food intake, water intake, and change in body weight were measured daily before dosing, during two weeks of dosing, and during one week after stopping dosing. Two eats from each group were killed at the end of each week, and stomach, liver, and kidney were collected for histopathologic examination. The results show a significant decline in daily food intake and daily change in body weight, and a significant increase in daily water intake in both dosed groups during the dosing period. Microscopic lesions were seen in the kidneys of both dosed rats group killed at the end of first and second week


Sign in / Sign up

Export Citation Format

Share Document