G Protein-Coupled Receptors: Functional and Mechanistic Insights Through Altered Gene Expression

1998 ◽  
Vol 78 (1) ◽  
pp. 35-52 ◽  
Author(s):  
DANIEL K. ROHRER ◽  
BRIAN K. KOBILKA

Rohrer, Daniel K., and Brian K. Kobilka. G-Protein Coupled Receptors: Functional and Mechanistic Insights Through Altered Gene Expression. Physiol. Rev. 78: 35–52, 1998. — G protein-coupled receptors (GPCRs) comprise a large and diverse family of molecules that play essential roles in signal transduction. In addition to a constantly expanding pharmacological repertoire, recent advances in the ability to manipulate GPCR expression in vivo have provided another valuable approach in the study of GPCR function and mechanism of action. Current technologies now allow investigators to manipulate GPCR expression in a variety of ways. Graded reductions in GPCR expression can be achieved through antisense strategies or total gene ablation or replacement can be achieved through gene targeting strategies, and exogenous expression of wild-type or mutant GPCR isoforms can be accomplished with transgenic technologies. Both the techniques used to achieve these specific alterations and the consequences of altered expression patterns are reviewed here and discussed in the context of GPCR function and mechanism of action.

2004 ◽  
Vol 82 ◽  
pp. S292 ◽  
Author(s):  
H.J. Kang ◽  
Y. Katagiri ◽  
Q.V. Neri ◽  
R. Baergen ◽  
Z. Rosenwaks ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3930-3930 ◽  
Author(s):  
Zachary Hunter ◽  
Evdoxia Hatjiharissi ◽  
Jenny Sun ◽  
Yang Cao ◽  
Hsiuyi Tseng ◽  
...  

Abstract Abstract 3930 Poster Board III-866 Background The use of gene expression profiling (GEP) was used to dissect the molecular profile of Waldenstrom's macroglobulinemia. Bone marrow CD19+ cells from 22 WM patients and 8 healthy donor (HD) were used in these studies, with application of analytics geared toward non-normally distributed data. Patient characteristics were as follows: median age 64 years; bone marrow disease involvement 35%; serum IgM 3,295 mg/dl; beta-2 microglobulin (B2M) 2.7 mg/L; WM ISS Prognostic Score 2. Four patients (18%) previously received rituximab, and 4 (18%) patients had a family history of WM and/or related B-cell disorders. Materials and Methods GEP was performed using the Affymetrix U133 plus 2 platform on CD19+ selected, CD138 depleted bone marrow cells. Array quality checks, normalization, and unsupervised hierarchical clustering were conducted using dChip (Li and Wong 2001 PNAS). These results were then used for further analysis via custom perl scripts that used 10,000 resampled groups to calculate bootstrap percentile based 95% confidence intervals (CI) for both mean and median values. Comparisons between groups were evaluated using approximate permutation testing. To help identify potential biomarkers, absence/presence calls from DCHIP based on the perfect match vs. mismatch comparisons were tabulated for each group and the contingency table resulting from group comparisons were analyzed using a Fisher's exact test. A gene was considered significant if 50% of its probes displayed at least a 2-fold change, mutual exclusion of means/median values and respective 95% CI, and p < 0.01 for both mean and median comparisons. This data was then compared with dChip clustering results and analyzed using Ingenuity Pathway Analysis (Ingenuity Systems). Results Significantly down regulated genes included DLL1 (-13.5 fold, expressed 0% WM vs. 88% HD, P<0.0001), LILRB5 (-13.9 fold expressed in 5% WM vs. 62% HD, P=0.003), MXD1 (-10.3 fold), FOSL2 (-8.8 fold), CXCL12 (-8.0 fold), and ATF3 (-7.5 fold). Up-regulated genes included a number of G-protein coupled receptors including LPAR5 (+7.3 fold), CYSLTR1 (+6.8 fold), and GPER (+16 fold). Other genes of interest included TLR9 (+3.9 fold), TLR10 (+2.8 fold), along with several anti-viral proteins including RANSEL (+6.9 fold), OAS1 (+7.8 fold), and OAS2 (+2.3 fold). Subgroup analysis revealed an up regulation of GP5 (+3.5 fold), LHX1 (+3.3 fold), ERG1 (+3.2 fold), FZD1 (+2.6 fold), and EFNB2 (+2.2 fold) in patients with a family history of WM and/or related B-cell disorders. For those with a high ISS score (≥3), we observed differences in WNT5A (+5.04 fold), CXCL12 (+3.5 fold), NOTCH4 (-2.6 fold) and IL2RA (-2.6 fold). Lastly, WM patients previously treated with rituximab displayed increased expression of BTG2 (+2.3 fold), MCL2 (+2.5 fold), and ARMCX2 (+5.5 fold). Conclusions The results of these studies demonstrate differential expression of several novel genes in WM including g protein coupled receptors and genes involved in interferon signaling. Importantly, these studies demonstrate for the first time differential expression of several gene candidates involved in B-cell differentiation that distinguish sporadic versus familial WM. Moreover, GEP revealed a unique profile for patients presenting with poor prognostic disease. Lastly, these studies reveal the up-regulation of 2 tumor suppressor genes, and the anti-apoptotic gene MCL-2 in WM patients treated with rituximab. The findings of these studies therefore have important implications in the pathogenesis, prognostication and treatment of WM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 699-699
Author(s):  
Eva von der Heide ◽  
Sebastian Vosberg ◽  
Martin Neumann ◽  
Liliana H. Mochmann ◽  
Alva Rani James ◽  
...  

Abstract It is increasingly recognized that the tumor microenvironment plays a pivotal role in cancer initiation and progression. In mouse models it was shown that a genetically altered bone marrow (BM) micro milieu was sufficient to induce leukemia (Raaijmakers, Nature 2010); however, the pathogenic role and contribution of the BM stroma in leukemia initiation and during disease progression warrants further investigation. To address this, we have performed gene expression, methylation, RNAseq, whole exome sequencing (WES) in BM mesenchymal stroma cells (BM-MSC) and leukemic cells from AML patients (pts) to unravel underlying molecular alterations. We collected BM hematopoietic cells (BM-HC) as well as plastic-adherent BM-MSC from aspirates from AML pts and healthy donors (HD). BM-MSC were expanded to passage 4 and defined as CD73+/CD105+/CD271+/low/CD45-/CD33-. We investigated gene expression profiles (Affymetrix) of BM-MSC from newly diagnosed AML pts (n=20) and compared these to BM-MSC from HD (n=4). BM-MSC from AML pts displayed an altered expression signature with 191and 175genesbeingsignificantly 2-fold over- and under-expressed. KEGG analysis of differentially expressed genes in BM-MSC from AML pts exhibited enrichment for TGF-ß signalling, whereas downregulated genes were enriched for cytokine receptor interactions. Several of these candidates were validated in a larger set of BM-MSC samples by RT-PCR. One putative stroma-leukemia interaction molecule, lumican (LUM) was highly overexpressed in BM-MSC (n=60) from AML pts compared to HD (n=5; p value =0.019) indicating that LUM may affect the BM niche in AML. To explore the altered expression pattern in AML BM-MSC compared to HD BM-MSC, global methylation analyses (Illumina Infinium HumanMethylation 450 bead chip arrays) were performed in 5 AML pts where we had collected BM-HC and BM-MSC at 3 sequential time points [initial diagnosis (ID), remission (CR), relapse (REL); n=30] as well as in BM-HC and BM-MSC from HDs (n=6). A significantly different methylation profile was evident comparing AML BM-HC to the corresponding AML BM-MSC samples, the latter showing a homogenous pattern during the course of disease. When AML BM-MSC were compared to a set of HD BM-MSC, we identified 2416 differentially methylated CpG sites (p value <0.01) indicating that an epigenetic deregulation contributes to the altered gene expression profile observed in AML BM-MSC. These 30 AML BM-MSC/BM-HC samples were subsequently analyzed by WES to unravel genetic alterations in the compartments of the mesenchymal and hematopoietic cell fractions. In WES (HiSeq2000, 100bp paired-end), we obtained an average of 100 reads for the target region; more than 90% of the exome target region was covered at least 30-fold. When the AML BM-HC CR sample was used as germline control, a median of 3 SNVs were detected in AML BM-MSC samples. The only BM-MSC-specific alteration present in one AML patient at all time points (ID, CR, REL) was a mutation in the plectin gene (PLEC). This mutation in the ROD domain of this cytoskeletal linker protein is located in the hot spot for mutations described in epidermolysis bullosa. This mutation was validated by Sanger sequencing, however in a larger cohort of 50 AML ID BM-MSC, no additional PLEC mutation at the same position was found. The set of AML BM-MSC (n=15) samples further allowed us to identify lesions (SNVs, Indels) in the corresponding BM-HC (n=15). When we used the AML BM-MSC as germline control we identified in total 43 lesions in the AML BM-HC fractions, which were not found when the corresponding BM-HC CR sample was used as germline control. This unraveled pre-leukemic lesions present in the AML BM-HC at remission: importantly using this approach, lesions in ASXL1 (Y591*) and DNMT3A (R882H), and in another patient a DNMT3A (M880V) mutation were revealed. In conclusion, the altered gene expression profile and methylation signature of AML BM-MSC provide novel insights into the pathogenic role of the leukemic BM microenvironment. Genetic alterations explored by WES revealed only very few genetic hits that will require further functional exploration. However, the low number of genetic alterations suggests that the transcriptional and epigenetic alterations are directed by extrinsic factors. At the same time, AML BM-MSC provides a non-hematopoietic derived germline control that allows to unravel pre-leukemic lesions in BM-HC. Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 32 (5) ◽  
pp. 871-872 ◽  
Author(s):  
V. Binet ◽  
C. Goudet ◽  
C. Brajon ◽  
L. Le Corre ◽  
F. Acher ◽  
...  

The GABAB (γ-aminobutyric acid-B) receptor is composed of two subunits, GABAB1 and GABAB2. Both subunits share structural homology with other class-III G-protein-coupled receptors. They contain two main domains, a heptahelical domain typical of all G-protein-coupled receptors and a large ECD (extracellular domain). It has not been demonstrated whether the association of these two subunits is always required for function. However, GABAB2 plays a major role in coupling with G-proteins, and GABAB1 has been shown to bind GABA. To date, only ligands interacting with GABAB1-ECD have been identified. In the present study, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABAB receptor. We have shown that it can weakly activate the wild-type GABAB receptor, but also the GABAB2 expressed alone, thus being the first described agonist of GABAB2. CGP7930 retains its weak agonist activity on a GABAB2 subunit deleted of its ECD. Thus the heptahelical domain of GABAB2 behaves similar to a rhodopsin-like receptor. These results open new strategies for studying the mechanism of activation of GABAB receptor and examine any possible role of GABAB2.


2013 ◽  
Vol 45 (23) ◽  
pp. 1168-1185 ◽  
Author(s):  
J. David Furlow ◽  
Monica L. Watson ◽  
David S. Waddell ◽  
Eric S. Neff ◽  
Leslie M. Baehr ◽  
...  

Muscle atrophy can result from inactivity or unloading on one hand or the induction of a catabolic state on the other. Muscle-specific ring finger 1 (MuRF1), a member of the tripartite motif family of E3 ubiquitin ligases, is an essential mediator of multiple conditions inducing muscle atrophy. While most studies have focused on the role of MuRF1 in protein degradation, the protein may have other roles in regulating skeletal muscle mass and metabolism. We therefore systematically evaluated the effect of MuRF1 on gene expression during denervation and dexamethasone-induced atrophy. We find that the lack of MuRF1 leads to few differences in control animals, but there were several significant differences in specific sets of genes upon denervation- and dexamethasone-induced atrophy. For example, during denervation, MuRF1 knockout mice showed delayed repression of metabolic and structural genes and blunted induction of genes associated with the neuromuscular junction. In the latter case, this pattern correlates with blunted HDAC4 and myogenin upregulation. Lack of MuRF1 caused fewer changes in the dexamethasone-induced atrophy program, but certain genes involved in fat metabolism and intracellular signaling were affected. Our results demonstrate a new role for MuRF1 in influencing gene expression in two important models of muscle atrophy.


2003 ◽  
Vol 284 (4) ◽  
pp. C999-C1005 ◽  
Author(s):  
George D. Thorne ◽  
Richard J. Paul

Organ culture specifically inhibits vasorelaxation to acute hypoxia and preferentially decreases specific voltage-dependent K+channel expression over other K+ and Ca2+channel subtypes. To isolate further potential oxygen-sensing mechanisms correlated with altered gene expression, we performed differential display analysis on RNA isolated from control and cultured coronary arterial rings. We hypothesize that organ culture results in altered gene expression important for vascular smooth muscle contractility important to the mechanism of hypoxia-induced relaxation. Our results indicate a milieu of changes suggesting both up- and downregulation of several genes. The altered expression pattern of two positive clones was verified by Northern analysis. Subsequent screening of a porcine cDNA library indicated homology to the ryanodine receptor (RyR). RT-PCR using specific primers to the three subtypes of RyR shows an upregulation of RyR2 and RyR3 after organ culture. Additionally, the caffeine- and/or ryanodine-sensitive intracellular Ca2+store was significantly more responsive to caffeine activation after organ culture. Our data indicate that organ culture increases expression of specific RyR subtypes and inhibits hypoxic vasorelaxation. Importantly, ryanodine blunted hypoxic relaxation in control coronary arteries, suggesting that upregulated RyR might play a novel role in altered intracellular Ca2+ handling during hypoxia.


2011 ◽  
Vol 392 (12) ◽  
pp. 1123-1134 ◽  
Author(s):  
Christina Khouri ◽  
Anna Dittrich ◽  
Sara Dutton Sackett ◽  
Bernd Denecke ◽  
Christian Trautwein ◽  
...  

AbstractInflammation is the biological response to injurious stimuli. In the initial phase of the inflammatory process, interleukin-6 (IL-6) is the main inducer of acute phase protein expression in the liver. A prolonged acute phase response is characterised by a disturbed glucose homeostasis and elevated levels of IL-6, insulin, and counterregulatory hormones such as glucagon. Several studies deal with the impact of IL-6 on glucagon-dependent gene expression. In contrast, only very little is known about the influence of G-protein-coupled receptors on IL-6 signalling. Therefore, the aim of this study is to elucidate the regulation of IL-6-induced gene expression by glucagon. We could reveal a novel mechanism of negative regulation of IL-6-induced MAP kinase activation by glucagon in primary murine hepatocytes. IL-6-dependent induction of the ERK-dependent target geneTfpi2, coding for a Kunitz-type serine protease inhibitor, was strongly down-regulated by glucagon treatment. Studying the underlying mechanism revealed a redundant action of the signalling molecules exchange protein activated by cyclic AMP (Epac) and protein kinase A. The metabolic hormone glucagon interferes in IL-6-induced gene expression. This observation is indicative for a regulatory role of G-protein-coupled receptors in the IL-6-dependent inflammatory response.


2007 ◽  
Vol 196 (1) ◽  
pp. 70.e1-70.e6 ◽  
Author(s):  
Cathal McCarthy ◽  
Finbarr E. Cotter ◽  
Suzanne McElwaine ◽  
Anne Twomey ◽  
Eoghan E. Mooney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document