scholarly journals A Review on Eigenstructure Assignment Methods and Orthogonal Eigenstructure Control of Structural Vibrations

2009 ◽  
Vol 16 (6) ◽  
pp. 555-564 ◽  
Author(s):  
Mohammad Rastgaar ◽  
Mehdi Ahmadian ◽  
Steve Southward

This paper provides a state-of-the-art review of eigenstructure assignment methods for vibration cancellation. Eigenstructure assignment techniques have been widely used during the past three decades for vibration suppression in structures, especially in large space structures. These methods work similar to mode localization in which global vibrations are managed such that they remain localized within the structure. Such localization would help reducing vibrations more effectively than other methods of vibration cancellation, by virtue of confining the vibrations close to the source of disturbance. The common objective of different methods of eigenstructure assignment is to provide controller design freedom beyond pole placement, and define appropriate shapes for the eigenvectors of the systems. These methods; however, offer a large and complex design space of options that can often overwhelm the control designer. Recent developments in orthogonal eigenstructure control offers a significant simplification of the design task while allowing some experience-based design freedom. The majority of the papers from the past three decades in structural vibration cancellation using eigenstructure assignment methods are reviewed, along with recent studies that introduce new developments in eigenstructure assignment techniques.

2019 ◽  
Vol 42 (3) ◽  
pp. 551-564
Author(s):  
Ghasem Khajepour ◽  
Ramin Vatankhah ◽  
Mohammad Eghtesad ◽  
Mohsen Vakilzadeh

In this article, modeling and control of a rotating hub-beam system are studied. The system consists of a solid rotating cylinder and an attached flexible arm with a payload at the end. The rotation is supposed to be in the presence of gravity and the flexible arm is assumed to be a Euler-Bernoulli beam. To derive the equations of motion of the system, Lagrange’s method is applied. Moreover, Galerkin’s technique is employed to discretize the equations of motion. Furthermore, designing an appropriate two-time (slow and fast) scale controller in the presence of uncertainties is considered in order to track the desired hub angular position and suppress vibrations of the arm simultaneously. For the so-called slow subsystem, a novel controller design is proposed as two different cases, with and without the presence of uncertainties in system dynamics are considered; and accordingly, a control law for tracking the desired path is introduced based on the idea of using the cross-term constructed Lyapunov function. For the fast subsystem, a pole placement technique is used to suppress vibration of the beam. The simulation results indicate notable effectiveness of the proposed controller.


2016 ◽  
Vol 23 (3) ◽  
pp. 345-360 ◽  
Author(s):  
Donald S Nyawako ◽  
Paul Reynolds

This study presents the results of vibration suppression of a walkway bridge structure with a single actuator and sensor pair by using a proportional-integral (PI) controller and observer-based pole-placement controllers. From the results of experimental modal analysis, reduced-order models of the walkway are identified. These are used for the design of a PI controller as well as for state estimation procedures that are necessary for the development of reduced-order observer controllers. The respective orders of the latter are dependent on the number of plant modes used for their designs. They are formulated from plant and observer feedback gains that are obtained from the specification of desired floor closed-loop eigenvalues and observer eigenvalues. There are numerous solutions possible with the observer-based controller design procedures whereas the PI controller defaults to a particular solution. There is also the flexibility for isolation and control of target vibration modes with the observer-based controllers for higher controller orders from a purely single-input single-output controller scheme as demonstrated in the analytical and experimental studies presented. Further, in this work, a design space of potential feedback gains is specified, where only a single plant mode has been used for the observer-based controller design process, and a multi-objective genetic algorithm optimization scheme is used to search for an optimal solution within some pre-defined constraint conditions. The best solution here is regarded as one that offers the greatest vibration mitigation performance amongst the solutions identified.


1988 ◽  
Vol 27 (1) ◽  
pp. 81-83
Author(s):  
Nadeem A. Burney

Its been long recognized that various economies of the world are interlinked through international trade. The experience of the past several years, however, has demonstrated that this economic interdependence is far greater than was previously realized. In this context, the importance of international economic theory as an area distinct from general economics hardly needs any mentioning. What gives international economic theory this distinction is international markets for some goods and effects of national sovereignty on the character of economic activity. Wilfred Ethier's book, which incorporates recent developments in the field, is an excellent addition to textbooks on international economics for one- or twosemester undergraduate courses. The book mostly covers standard topics. A distinguishing feature of this book is its detailed analysis of the flexible exchange rates and a discussion of the various approaches used for their determination. Within each chapter, the author has extensively used facts, figures and major events to clarify the concepts in the light of the theoretical framework. The book also discusses, in a fair amount of detail, the existing international monetary system and the role of various international organizations.


2019 ◽  
pp. 451-458
Author(s):  
Peter W. Rein

Developments in the technology of production of sugar from sugarcane tend to be incremental improvements in an effort to reduce costs and boost revenue. Nonetheless the developments are significant and contribute to sustainable sugarcane enterprises. Some technologies have adapted to changing environmental conditions, and more attention is being given to boosting revenue through associated activities, particularly in enhancing the potential for sugarcane operations to exploit the energy value of sugarcane. This paper outlines recent developments of interest in processing sugarcane.


2017 ◽  
Vol 40 (3) ◽  
pp. 295-310
Author(s):  
Sabine Wilke

Every late spring since 1951, the Wiener Festwochen bring performers from around the world to Vienna for an opportunity to share recent developments in performance styles and present them to a Viennese public that seems to be increasingly open to experimentation. These festival weeks solidify a specific form of Viennese self-understanding and self-representation as a culture that is rooted in performance. This essay seeks to link two recent Austrian performances—one of them was part of the Wiener Festwochen in 2016, the other was staged in downtown Linz during the past few years—to this Austrian and specifically Viennese culture of performance by reading them as contemporary articulations of a tradition of radical performance art that can be traced back to the Viennese Actionism of the sixties and later feminist articulations in the seventies and eighties. They play on the dramatic effect of these actions, specifically their joy in cruelty, chaos, and orgiastic intoxication, by staging regressions and thus making visible what has been dammed up and repressed in contemporary society.1 Just as their historical models, these two performances merge the performing and the fine arts and they highlight provocative, controversial, and, at times, violent content. But they do it in an interspecies context that adds an entire layer of complexity to the project of societal and cultural critique.


2019 ◽  
Vol 26 (13) ◽  
pp. 2330-2355 ◽  
Author(s):  
Anutthaman Parthasarathy ◽  
Sasikala K. Anandamma ◽  
Karunakaran A. Kalesh

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations. Here, we will briefly describe the key methodologies and strategies used in the therapeutic peptide development processes with selected examples of the most recent developments in the field. The aim of this review is to highlight the viable options a medicinal chemist may consider in order to improve a specific pharmacological property of interest in a peptide lead entity and thereby rationally assess the therapeutic potential this class of molecules possesses while they are traditionally (and incorrectly) considered ‘undruggable’.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 484
Author(s):  
Syed Arif Hussain Rizvi ◽  
Justin George ◽  
Gadi V. P. Reddy ◽  
Xinnian Zeng ◽  
Angel Guerrero

Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.


Sign in / Sign up

Export Citation Format

Share Document