scholarly journals An Advanced Microturbine System with Water-Lubricated Bearings

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Susumu Nakano ◽  
Tadaharu Kishibe ◽  
Tomoaki Inoue ◽  
Hiroyuki Shiraiwa

A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC) and a humid air turbine (HAT). The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

Author(s):  
Susumu Nakano ◽  
Tadaharu Kishibe ◽  
Hidefumi Araki ◽  
Manabu Yagi ◽  
Kuniyoshi Tsubouchi ◽  
...  

A prototype machine for a next generation microturbine system incorporating a simplified humid air turbine cycle has been developed for laboratory evaluation. Design targets of electrical output were 150 kW and of electrical efficiency, 35% LHV. The main feature of this microturbine system was utilization of water for improved electrical output, as lubricant for bearings and as coolant for the cooling system of the generator and the power conversion system Design specifications without WAC (Water Atomizing inlet air Cooling) and HAT (Humid Air Turbine) were rated output of 129 kW and efficiency of 32.5% LHV. Performance tests without WAC and HAT were done successfully. Electrical output of 135 kW with an efficiency of more than 33% was obtained in the rated load test. Operation tests for WAC and HAT were carried out under the partial load condition as preliminary tests. Water flow rates of WAC were about 0.43 weight % of inlet air flow rate of the compressor and of HAT, about 2.0 weight %. Effects of WAC and HAT were promptly reflected on electrical output power. Electrical outputs were increased 6 kW by WAC and 11kW by HAT, and efficiencies were increased 1.0 pt % by WAC and 2.0 pt % by HAT. Results of WAC and HAT performance tests showed significant effects on the electrical efficiency with an increase of 3.0 point % and electrical output with an increase of 20% by supplying just 2.4 weight % water as the inlet air flow rate of the compressor.


Author(s):  
Satoshi Dodo ◽  
Susumu Nakano ◽  
Tomoaki Inoue ◽  
Masaya Ichinose ◽  
Manabu Yagi ◽  
...  

A prototype machine for a next generation microturbine system applying a simple humid air turbine system (design target of electrical output: 150 kW, electrical efficiency: 35% LHV) was developed for its laboratory evaluation. A low NOx combustor which applied a lean-lean zone combustion concept and water lubricated bearings were developed for the prototype machine. Operation using two water lines for the humid air turbine (HAT) was proposed as an effective way to obtain rated electric output to ambient temperature of 40 deg C. Tests for the main components were done successfully. Motoring tests, full speed test with no load, 50% load and 70% load tests as preliminary tests for rated load tests were also carried out successfully. Low NOx emission of 7.6 ppm and high efficiency of 95.6% for the power conversion system were achieved in the partial load tests. At the first rated load test without HAT and Water atomizing inlet air cooling (WAC) that followed those partial load tests, 150.3 kW electric output with electrical efficiency of 32% was obtained.


Author(s):  
Sy A. Ali ◽  
Charles M. Zeh

The U.S. Department of Energy (DOE) has established a government/industry partnership program to greatly improve the capabilities of U.S. gas turbine technology. A new and challenging program named the Advanced Turbine Systems Program (ATS) has been initiated by DOE. The technical and business objectives of this initiative are to challenge the bounds of high performance capabilities of gas turbines, meet stringent environmental requirements, and produce lower cost electric power and cogeneration steam. This program will also yield greater societal benefits through continued expansion of high skilled U.S. jobs and export of U.S. products world wide. A progress report on the ATS program pertaining to program status at DOE will be presented and reviewed in this paper. A preliminary design of an industrial advanced turbine system configuration will also be outlined in the paper. The technical challenges; advanced critical technologies incorporation, analytical and experimental solutions, and test results of an advanced gas turbine meeting the DOE goals will be described and discussed.


1972 ◽  
Vol 94 (4) ◽  
pp. 294-302
Author(s):  
P. W. Curwen ◽  
W. E. Young ◽  
R. G. Furgurson

High temperatures and rotative speeds of future U. S. Army aircraft propulsion systems will impose increasingly severe operating requirements on oil-lubricated engine bearings and associated seals. Accordingly, air-lubricated bearings are being investigated as a possible approach to alleviating the lubrication problems. This paper presents the results of design and performance studies, as well as bearing component tests, relative to applying air bearings to a two-shaft, 3.5-lb/sec turboshaft engine. The test results verify that air bearings can carry the maximum loads imposed by flight and landing conditions, and can survive the sliding contacts associated with 15,000 engine start/stop cycles. Incentives for pursuing the air-bearing approach are identified, as are also the development and problem areas.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Zhi Hu Xue ◽  
Wei Qu ◽  
Ming Hui Xie

Abstract Two high performance loop heat pipes (LHPs) are developed for direct cooling of the chips in supercomputer. The two LHPs using flat evaporator are: one called water-cooling LHP and another one called air-cooling LHP. The working fluid of LHP is ammonia. The water-cooling LHP can work well at a heat load up to 663 W and air-cooling LHP can work well at a heat load up to 513 W. The two LHPs applying to the real computer servers are realized and tested. The server test results with water-cooling LHP have shown that the operating temperature of central processing units (CPUs) can be controlled to about 67 °C to ensure the reliable operating and acceptable level for electronic chips, even at condenser-cooling water temperature of 40 °C with low water flowrate of 0.055 m3/h. The server test results with air-cooling LHP have shown that the operating temperature of CPUs can be controlled to about 51 °C even at condenser-cooling wind temperature of 30 °C with wind flowrate of 41.88 m3/h.


2001 ◽  
Vol 123 (08) ◽  
pp. 48-52
Author(s):  
Michael Valenti

This article provides details of various aspects of air cooling technologies that can give gas turbines a boost. Air inlet cooling raises gas turbine efficiency, which is proportional to the mass flow of air fed into the turbine. The higher the mass flow, the greater the amount of electricity produced from the gas burned. Researchers at Mee Industries conduct laser scattering studies of their company’s fogging nozzles to determine if the nozzles project properly sized droplets for cooling. The goal for turbine air cooling systems is to reduce the temperature of inlet air from the dry bulb temperature, the ambient temperature, to the wet bulb temperature. The Turbidek evaporative cooling system designed by Munters Corp. of Fort Myers, Florida, is often retrofit to turbines, typically installed in front of pre-filters that remove particulates from inlet air. Turbine Air Systems designs standard chillers to improve the performance of the General Electric LM6000 and F-class gas turbines during the hottest weather.


Author(s):  
Takanori Shibata ◽  
Yasuo Takahashi ◽  
Shigeo Hatamiya

A Water Atomization Cooling (WAC) system is a kind of inlet fogging technique with overspray, which reduces the compression work due to the intra-cooling effect of over-injected droplet evaporation. The WAC system has been successfully applied to mid- and large-sized gas turbines, but its application to small turbines is rare. Hitachi developed a 3.7 MW Advanced Humid Air Turbine (AHAT) plant as a national project from 2004 to 2006. The plant has a two-stage centrifugal compressor with a total-to-total pressure ratio of 8.3 without the WAC system. We compare theoretical and experimental evaporation behaviors of injected droplets into the compressor and their effect on the compressor characteristics, when the WAC system was applied to the AHAT plant.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


2014 ◽  
Vol 1079-1080 ◽  
pp. 258-265
Author(s):  
Chen Ning Cai ◽  
Shan He ◽  
Li Na Liu ◽  
Shi Kun Ou

Thispaper presents an experimental study to strengthen an existing bridge usingpre-stressed carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer(GFRP) materials. The method using pre-stressed hybrid fiber reinforced polymer(HFRP) to strengthened structural members is an emerging pre-stressed strengtheningtechnology. In this study, experimental data selected from result of staticloading test conducted to hollow slabs with CFRP/GFRP has been compared with specimenswithout strengthening. Test results showed that the strengthening methoddeveloped in this study could effectively reduce the stress in hollow slab,improving the flexural rigidity and inhibiting the concrete from fracture.


2014 ◽  
Vol 907 ◽  
pp. 139-149 ◽  
Author(s):  
Eckart Uhlmann ◽  
Florian Heitmüller

In gas turbines and turbo jet engines, high performance materials such as nickel-based alloys are widely used for blades and vanes. In the case of repair, finishing of complex turbine blades made of high performance materials is carried out predominantly manually. The repair process is therefore quite time consuming. And the costs of presently available repair strategies, especially for integrated parts, are high, due to the individual process planning and great amount of manually performed work steps. Moreover, there are severe risks of partial damage during manually conducted repair. All that leads to the fact that economy of scale effects remain widely unused for repair tasks, although the piece number of components to be repaired is increasing significantly. In the future, a persistent automation of the repair process chain should be achieved by developing adaptive robot assisted finishing strategies. The goal of this research is to use the automation potential for repair tasks by developing a technology that enables industrial robots to re-contour turbine blades via force controlled belt grinding.


Sign in / Sign up

Export Citation Format

Share Document