scholarly journals IL-17B Can Impact on Endothelial Cellular Traits Linked to Tumour Angiogenesis

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Andrew J. Sanders ◽  
Xiaoxia Guo ◽  
Malcolm D. Mason ◽  
Wen G. Jiang

IL-17B is a member of the IL-17 cytokine family which have been implicated in inflammatory response and autoimmune diseases such as rheumatoid arthritis. The founding member of this family, IL-17 (or IL-17A), has also been implicated in promoting tumour angiogenesis through the induction of other proangiogenic factors. Here we examine the potential of recombinant human IL-17B to contribute to the angiogenic process. In vitro rhIL-17B was able to inhibit HECV endothelial cell-matrix adhesion and cellular migration and also, at higher concentrations, could substantially reduce tubule formation compared to untreated HECV cells in a Matrigel tubule formation assay. This data suggests that IL-17B may act in an antiangiogenic manner.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Michel Desjarlais ◽  
Sylvie Dussault ◽  
Wahiba Dhahri ◽  
Alain Rivard

Background: The activation of the renin-angiotensin system is associated with impaired formation of new blood vessels (neovascularization) in response to ischemia. Aliskiren is the only direct renin inhibitor that is clinically used as an orally active antihypertensive drug. Here we tested the hypothesis that aliskiren might improve neovascularization following ischemia. Methods and Results: C57BL/6 mice were treated with a high dose of aliskiren (50 mg/kg), a low dose of aliskiren (10 mg/kg), or drinking water only. After two weeks of treatment, hindlimb ischemia was surgically induced by femoral artery removal. Treatment with aliskiren led to a significantly faster rate of blood flow recovery after hindlimb ischemia (Laser Doppler). Interestingly the lower dose of aliskiren, which did not reduce blood pressure, provided similar improvement of blood flow recuperation compared to the higher dose of aliskiren. At day 21 after surgery, Doppler flow ratios were significantly improved in mice treated with aliskiren (0.69+/-0.07 vs. 0.52+/-0.03; p<0.05). This was associated with an increased expression of angiogenic factors in ischemic muscles, including VEGF and eNOS. Endothelial progenitor cells (EPCs) have been shown to have an important role in postnatal neovascularisation. We found that aliskiren significantly increased the number of bone marrow EPCs at day 7 after ischemia (172+/-7% increase; p<0.05). Moreover, the adhesive properties of EPCs were significantly improved in mice treated with aliskiren (175+/-5% increase; p<0.05). In vitro, aliskiren improves cellular migration and tubule formation in HUVECs. This is associated with an increased expression of nitric oxide (DAF staining), and a significant reduction of oxidative stress levels (DHE staining). Importantly, the antioxidant and angiogenic properties of aliskiren in HUVECs are abolished following treatment with the NOS inhibitor L-NAME. Conclusions: Direct renin inhibition with aliskiren leads to improved ischemia-induced neovascularization that is not dependant on blood pressure lowering. The mechanisms involve beneficial effects of aliskiren on NO and angiogenic pathways in ischemic tissues, together with an increase in the number and the functional activity of EPCs.


1981 ◽  
Author(s):  
M A Gimbrone ◽  
C F Dewey ◽  
P F Davies ◽  
S R Bussolari

The vascular endothelial lining in vivo is constantly subjected to hemodynamic shear stresses resulting from normal and altered patterns of blood flow. To facilitate the study of effects of fluid shear stress on endothelial cell structure and function, we have developed an in vitro system, utilizing a cone-plate apparatus, to subject coverslip cultures of bovine aortic endothelial cells (BAEC) to controlled levels of shear (up to 102 dynes/cm2) in either laminar or turbulent flow. The magnitude and direction of shear stress within the system are accurately known from both theory and experimental measurements. The data reported here are for laminar flow. Subconfluent BAEC cultures continuously exposed to 1-5 dynes/cm2 shear proliferated at a rate comparable to that of static cultures, and postconfluent monolayers appeared unaltered morphologically for up to 1 week. In contrast, BAEC cultures (both postconfluent and subconfluent) exposed to 8 dynes/cm2 developed dramatic, time-dependent morphological changes. By 48 hrs, cells uniformly assumed an ellipsoidal configuration, with their major axes aligned in the direction of flow. Exposure to >10 dynes/cm2 caused variable cell detachment from plain glass substrates. Cellular migration into linear “wounds”, created in confluent areas, was influenced by both the direction and amplitude of applied shear. Exposure to 8 dynes/ cm2 induced functional alterations, including increased fluid (bulk phase) endocytosis, prostaglandin production and platelet reactivity. These observations indicate that fluid mechanical forces can directly influence endothelial cell structure and function. Hemodynamic modulation of endothelial cell behavior may be relevant to normal vessel wall physiology, as well as the pathogenesis of atherosclerosis and thrombosis.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Beata Machnicka ◽  
Aurélie Ponceau ◽  
Julien Picot ◽  
Yves Colin ◽  
Marie-Christine Lecomte

Blood ◽  
2011 ◽  
Vol 118 (15) ◽  
pp. 4274-4284 ◽  
Author(s):  
Feng Zhang ◽  
Jarett E. Michaelson ◽  
Simon Moshiach ◽  
Norman Sachs ◽  
Wenyuan Zhao ◽  
...  

Abstract Tetraspanin CD151 is highly expressed in endothelial cells and regulates pathologic angiogenesis. However, the mechanism by which CD151 promotes vascular morphogenesis and whether CD151 engages other vascular functions are unclear. Here we report that CD151 is required for maintaining endothelial capillary-like structures formed in vitro and the integrity of endothelial cell-cell and cell-matrix contacts in vivo. In addition, vascular permeability is markedly enhanced in the absence of CD151. As a global regulator of endothelial cell-cell and cell-matrix adhesions, CD151 is needed for the optimal functions of various cell adhesion proteins. The loss of CD151 elevates actin cytoskeletal traction by up-regulating RhoA signaling and diminishes actin cortical meshwork by down-regulating Rac1 activity. The inhibition of RhoA or activation of cAMP signaling stabilizes CD151-silenced or -null endothelial structure in vascular morphogenesis. Together, our data demonstrate that CD151 maintains vascular stability by promoting endothelial cell adhesions, especially cell-cell adhesion, and confining cytoskeletal tension.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1263-1263 ◽  
Author(s):  
Graham C. Chapman ◽  
Nicholas Greco ◽  
Richard Patrick Weitzel ◽  
Phil Paul ◽  
Peter Haviernik ◽  
...  

Abstract Currently, PRP is used clinically as a topical application to augment healing of both surgical and chronic, non-healing wounds. PRP exerts its efficacy by releasing growth factors that enhance clot formation and vasculogenesis. We conducted in vitro functional analyses comparing PRP and/or UCB-derived monocytes including cytokine production, cell migration, and HUVEC tubule formation in standard matrigel assays to test the hypothesis whether topical concurrent application of PRP and UCB-derived monocytes may serve to augment wound healing beyond the ability of topical PRP alone. UCB was obtained according to institutional guidelines and collected into bags with citrate dextrose (Allegiance). MNC were separated on a Histopaque-1077 (Sigma) density gradient. UCB CD14+ monocytes were isolated using AutoMACS magnetic cell sorter (Miltenyi), and cultured in RPMI with 1% HSA. PRP was isolated from adult peripheral blood by centrifugation. To determine if the addition of UCB monocytes may improve the wound healing effects of PRP alone, VEGF, bFGF, and PDGF secreted by monocytes alone, PRP alone, and monocytes supplemented with 3% PRP, were measured by ELISA (RayBiotech) daily over 4 days. PRP alone elicited no measurable secretion of VEGF. UCB-derived monocytes alone showed a low, constant production of VEGF over the four days of 0.868ng/ml. PRP supplemented with UCB-derived monocytes secreted VEGF at a 7.6-fold increase over either PRP or UCB monocytes alone, with a peak production at day three of 6.638ng/ml. PRP alone produced no measurable secretion of bFGF over the four day time course. UCB monocytes alone secreted bFGF in an increasing manner during the same time course. During days one to four, bFGF secreted by UCB monocytes was 33.8, 27.9, 115.4, and 452.1pg/ml, respectively. The presence of PRP suppressed this secretion, as PRP combined with UCB monocytes constantly secreted bFGF at an average of 39.9pg/ml throughout days one to four. Finally, secretion of PDGF was highest in conditions including PRP combined with UCB monocytes. PRP alone constantly produced PDGF at an average of 3,144pg/ml over a 4 day time course. Monocytes alone secreted PDGF constantly at a lower average of 597pg/ml. PRP supplemented with UCB monocytes secreted PDGF at a concentration 5.9-fold higher than PRP alone, producing an average of 18,534pg/ml over four days. To determine whether UCB-derived monocytes respond to cytokines elicited by injured vascular endothelial cells, we measured UCB-derived monocyte chemotaxis to HUVEC conditioned media in hypoxic conditions (5% O2). Migration experiments were conducted using Transwell plates with 8.0 μm pores. Monocytes were cultured in RPMI with 5% FBS at a concentration of 5×106/ml and were allowed to migrate for four hours to either: media alone, PRP, HUVEC-conditioned media, or HUVEC-conditioned media supplemented with PRP. We observed a 3.3 fold increase in the migration of the monocytes to HUVECconditioned media over that of basal media. Experiments with PRP alone showed no significant difference in monocyte migration compared to basal medium. To determine whether UCB-derived monocytes may serve to augment endothelial cell function beyond that elicited by PRP alone, matrigel experiments were conducted by adding HUVEC in endothelial cell basal medium. HUVEC tubule formation in matrigel in basal media was compared in three conditions including media conditioned with: 1) PRP alone, 2) UCB monocytes alone, or 3) a combination of PRP + UCB monocytes. We compared the kinetics and stability of enclosed endothelial cell networks formed by HUVEC. No significant benefit was seen with addition of PRP conditioned media. The number of enclosed endothelial cell networks reached a higher maximum with the addition of monocyte conditioned media (137 networks) as well as PRP + monocyte conditioned media (142 networks), compared to non-conditioned media (80 networks). UCB monocyte and PRP + UCB monocyte conditioned media also improved the stability of the enclosed cell networks in culture as structures persisted beyond 24h, while none were present in the PRP-conditioned or non-conditioned media matrigel cultures. Figure Figure In summary, these in vitro analyses support the hypothesis that UCB-derived monocytes significantly improve efficacy of PRP alone in augmentation of vasculogenesis and cell migration to vascular endothelial injury, thereby supporting potential concurrent topical application of UCB-derived monocytes to PRP in wound healing.


2004 ◽  
Vol 32 (3) ◽  
pp. 416-420 ◽  
Author(s):  
R. Zaidel-Bar ◽  
M. Cohen ◽  
L. Addadi ◽  
B. Geiger

The adhesion of cells to the extracellular matrix is a dynamic process, mediated by a series of cell-surface and matrix-associated molecules that interact with each other in a spatially and temporally regulated manner. These interactions play a major role in tissue formation, cellular migration and the induction of adhesion-mediated transmembrane signals. In this paper, we show that the formation of matrix adhesions is a hierarchical process, consisting of several sequential molecular events. One of the earliest steps in surface recognition is mediated, in some cells, by a 1 μm-thick cell-surface hyaluronan coat, which precedes the establishment of stable, cytoskeleton-associated adhesions. The earliest forms of these integrin-mediated contacts are dot-shaped FXs (focal complexes), which are formed under the protrusive lamellipodium of migrating cells. These adhesions recruit, sequentially, different anchor proteins that are involved in binding the actin cytoskeleton to the membrane. Conspicuous in its absence from FXs is zyxin, which is recruited to these sites only on retraction of the leading edge and the transformation of the FXs into a focal adhesion. Continuing application of force to focal adhesions results in the formation of fibrillar adhesions and reorganization of the extracellular matrix. The formation of these adhesions depends on actomyosin contractility and matrix pliability.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4218-4218
Author(s):  
Nicholas J. Greco ◽  
Brandon Eilertson ◽  
Jason J. Banks ◽  
Paul Scheid ◽  
Marcie Finney ◽  
...  

Abstract To assess in vitro angiogenesis, cellular co-culture assays have been utilized to study adherence, spreading, differentiation and proliferation, and migration of endothelial cells. Formation of tubule or capillary-like networks is influenced by the presence of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) but other factors provided by cell sources and/or direct contact with multiple cell types may facilitate this formation. The hypothesis of this study is that umbilical cord blood (UCB)-derived endothelial precursor cells (EPCs) may influence the formation of human umbilical vein endothelial cell (HUVEC) tubule structures during angiogenesis. Methods: UCB-derived EPCs were isolated from CD133negative cells after a 7-day culture on human fibronectin in EGM-2 media. Tubule formation was evaluated (passage 1–2, 20 x 103 or 2 x 103 cells) by adding HUVECs without or with EPCs to cultures of human bone marrow-derived mesenchymal stromal cells (MSCs) under normoxic (20%) conditions (37°C, 5% CO2, containing VEGF, epidermal growth factor, FGF, insulin-like growth factor, heparin, hydrocortisone, and ascorbic acid in EGM-2 medium) for a 2-week period. HUVECs were added to cultures without or with labeling with Vybrant® CM-DiI which allows the temporal observation of tubule formation progress and cellular incorporation. Final tubule formation was confirmed using a primary anti-CD31 (PECAM) antibody followed by a FITC-conjugated secondary antibody for signal amplification. Results: After 2–4 days, linear aggregates of labeled HUVECs (2-D arrangement) were observed. After 14 days, there was remodeling of HUVECs into the development of a 3D network of linear and branched tubule structures. EPCs facilitated the formation of tubules affecting both the extent of tubule formation and also enhanced proliferation of HUVEC cells. A minority (&lt; 5%) of EPCs were incorporated into developing tubules (estimated using CM-Dil-labeled EPCs). To quantify tubule formation, digital pictures of representative areas of culture wells (2–4/well) were acquired. Using Image Pro Plus software, tubules were quantified using multi-parameter analysis with respect to length, area, and perimeter. The presence of EPCs (equal to the number of added HUVECs) significantly enhanced all parameters. In comparison to control samples, the presence of EPCs increased the area, perimeter and size by 15.2-fold, 3.4-fold, and 3.2-fold, respectively. Confocal microscopy revealed that the co-cultures formed anatamoses, indicating the formation of a connected network. Conclusions: Taken together, these results suggest that the presence of cord blood-derived EPCs facilitate tubule formation and development via a heterotypic cell-cell interaction without integrating into the angiogenic structures. Further studies will evaluate the secretion of cytokines and growth factors.


Sign in / Sign up

Export Citation Format

Share Document