scholarly journals The Effects of Fractions from Shiitake Mushroom on Composition and Cariogenicity of Dental Plaque Microcosms in anIn VitroCaries Model

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Egija Zaura ◽  
Mark J. Buijs ◽  
Michel A. Hoogenkamp ◽  
Lena Ciric ◽  
Adele Papetti ◽  
...  

The aim of the current study was to investigate the anticariogenic potential of the (sub)fractions obtained from the edible mushroom shiitake (Lentinula edodes) inin vitrocaries model. We used a modified constant depth film fermentor (CDFF) with pooled saliva as the inoculum and bovine dentin as a substratum. The test compounds were low molecular weight fraction (MLMW) of the shiitake extract and subfractions 4 and 5 (SF4 and SF5) of this fraction. Chlorhexidine (CHX) and water served as a positive and a negative control, respectively. Dentin mineral loss was quantified (TMR), microbial shifts within the microcosms were determined (qPCR), and the acidogenicity of the microcosms was assessed (CIA). From the compounds tested, the SF4 of shiitake showed strong inhibiting effect on dentin demineralization and induced microbial shifts that could be associated with oral health. The acid producing potential was increased, suggesting uncoupling of the glycolysis of the microbiota by the exposure to SF4. In conclusion, the results suggest that SF4 of shiitake has an anticariogenic potential.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Peter Lingström ◽  
Egija Zaura ◽  
Haidar Hassan ◽  
Mark J. Buijs ◽  
Pamie Hedelin ◽  
...  

The main objective was to investigate whether low-molecular-weight fraction of edible mushroom shiitake extract (Lentinus edodes) possesses caries-preventive properties. The study was designed as a double-blind, three-leg, cross-over, randomized, controlled clinical trial carried out on two series of volunteers at the University of Gothenburg, and the Academic Centre for Dentistry Amsterdam. Volunteers rinsed twice daily with a solution containing low-molecular-weight fraction of edible mushroom, placebo (negative control without active ingredients), or Meridol (positive control, AmF-SnF2) for two weeks, with a two-week washout period between each rinsing period. Changes in the acidogenicity of dental plaque before and after a sucrose challenge, shifts in microbial composition, and plaque scores were determined. Frequent rinses with shiitake reduced the metabolic activity of dental plaque. No reduction of plaque scores and no inhibition of the production of organic acids in plaque was found. Minor differences in microbial composition between test sessions were found. To conclude, the results indicate that shiitake extract has anticariogenic potential, but not to the same extent as the positive control.


2009 ◽  
Vol 191 (23) ◽  
pp. 7216-7224 ◽  
Author(s):  
Luciana V. Rinaudi ◽  
Juan E. González

ABSTRACT Sinorhizobium meliloti is a soil bacterium that elicits the formation of root organs called nodules on its host plant, Medicago sativa. Inside these structures, the bacteria are able to convert atmospheric nitrogen into ammonia, which is then used by the plant as a nitrogen source. The synthesis by S. meliloti of at least one exopolysaccharide, succinoglycan or EPS II, is essential for a successful symbiosis. While exopolysaccharide-deficient mutants induce the formation of nodules, they fail to invade them, and as a result, no nitrogen fixation occurs. Interestingly, the low-molecular-weight fractions of these exopolysaccharides are the symbiotically active forms, and it has been suggested that they act as signals to the host plant to initiate infection thread formation. In this work, we explored the role of these rhizobial exopolysaccharides in biofilm formation and their importance in the symbiotic relationship with the host. We showed that the ExpR/Sin quorum-sensing system controls biofilm formation in S. meliloti through the production of EPS II, which provides the matrix for the development of structured and highly organized biofilms. Moreover, the presence of the low-molecular-weight fraction of EPS II is vital for biofilm formation, both in vitro and in vivo. This is the first report where the symbiotically active fraction of EPS II is shown to be a critical factor for biofilm formation and root colonization. Thus, the ability of S. meliloti to properly attach to root surfaces and form biofilms conferred by the synthesis of exopolysaccharides may embody the main function of these symbiotically essential molecules.


1987 ◽  
Author(s):  
T G van Dinther ◽  
F Hol ◽  
D G Meuleman

The effects of various heparin(oid)s, standard heparin VII (SH), dermatan sulphate (DS), a low molecular weight fraction of heparin (UMW-H), FragminR (FRA), Org 10172 = low molecular weight heparinoid, the fraction of Org 10172 with high affinity for AT-III (HA-10172) and the low affinity fraction (LA-10172) respectively were examined on in vitro thrombin generation and inactivation.Thrombin inactivation in the presence of either heparin cofactor II (HC-II) or anti-thrombin III (AT-III) was assessed with two newly developed assays using the purified cofactors, thrombin and chromogenic substrate S2238 on microtiterplates. Thrombin generation in the presence of HC-II and AT-III was studied using purified factor Xa, prothrombin and blood platelet lysate and the residual thrombin activity was assessed amidolytically.The inhibition of the compounds on thrombin activity are summarized in the tableThe following conclusions can be drawn:- SH, LMW-H, HA-10172 and FRA potentiate the AT-III mediated inactivation of Ha more strongly than the HC-II mediated inactivation.- DS and LA-10172 show the reverse pattern of inactivation, while Org 10172 potentiates both inactivaton pathways to a similar extent.Thrombin generation in the presence of HC-II is inhibited by mw-heparin(oid)s at approx. 2-5 times lower concentrations than the HC-II mediated thrombin inactivation, while the inhibiting effect of SH in both assays is comparable.AT-III mediated thrombin generation inhibition and AT-III mediated thrombin inactivation is comparable as well for SH, LMW-H and FRA. In contrast, Org 10172 and its subfractions are approx. 10 times more potent on AT-III mediated thrombin generation inhibition than on AT-III mediated thrombin inactivation.Org 10172 shows low anti-thrombin activity and this activity is mainly mediated via FC-II.


1974 ◽  
Vol 62 (2) ◽  
pp. 355-361 ◽  
Author(s):  
JENNIFER M. DEHNEL ◽  
P. D. McCONAGHEY ◽  
M. J. O. FRANCIS

SUMMARY Plasma somatomedin is the intermediary through which growth hormone (GH) exerts its effects on the growing skeleton. Somatomedin activity may be produced in vitro by perfusion of the liver and kidneys of rats with Waymouth's medium containing GH. The relationship between the activity of plasma somatomedin and somatomedin of hepatic and renal origin has yet to be clarified. Somatomedin from plasma can be separated into active fractions of both high and low molecular weight. Similarly, ultrafiltration of medium containing somatomedin of hepatic origin indicates the existence of two active fractions, one of high molecular weight (greater than 50000) and one of low molecular weight (less than 1000). The latter can be attributed to the release of amino acids, such as serine and glutamine, by the perfused tissue. The high molecular weight fraction is believed to represent GH-dependent somatomedin. Fractions that inhibit production of cartilage matrix are present in liver perfusates as well as in plasma. These results provide further evidence that the liver is a source of GH-dependent somatomedin in vivo. Furthermore, cartilage growth may be controlled not only by the GH-stimulated release of somatomedin by the liver, but also by its release of acid-labile somatomedin inhibitors.


2005 ◽  
Vol 94 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Cecilia C. C. Ribeiro ◽  
Cínthia P. M. Tabchoury ◽  
Altair A. Del Bel Cury ◽  
Livia M. A. Tenuta ◽  
Pedro L. Rosalen ◽  
...  

Sincein vitroand animal studies suggest that the combination of starch with sucrose may be more cariogenic than sucrose alone, the study assessedin situthe effects of this association appliedin vitroon the acidogenicity, biochemical and microbiological composition of dental biofilm, as well as on enamel demineralization. During two phases of 14 d each, fifteen volunteers wore palatal appliances containing blocks of human deciduous enamel, which were extra-orally submitted to four groups of treatments: water (negative control, T1); 2 % starch (T2); 10 % sucrose (T3); and 2 % starch+10 % sucrose (T4). The solutions were dripped onto the blocks eight times per day. The biofilm formed on the blocks was analysed with regard to amylase activity, acidogenicity, and biochemical and microbiological composition. Demineralization was determined on enamel by cross-sectional microhardness. The greatest mineral loss was observed for the association starch+sucrose (P<0·05). Also, this association resulted in the highest lactobacillus count in the biofilm formed (P<0·05). In conclusion, the findings suggest that a small amount of added starch increases the cariogenic potential of sucrose.


1994 ◽  
Vol 81 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Toshiki Aoki ◽  
Katsunobu Takenaka ◽  
Satoshi Suzuki ◽  
Neal F. Kassell ◽  
Oren Sagher ◽  
...  

✓ The importance of factors within hemolysate in modulating oxyhemoglobin (oxyHb)-induced contraction was examined in an in vitro model of rabbit basilar arteries. When the basilar arteries were exposed to purified oxyHb alone, the contractile response observed was significantly weaker than that seen in arteries exposed to hemolysate containing an equal concentration of oxyHb. In order to delineate the nature of the factors within hemolysate that facilitate contraction, hemolysate was fractionated, and various components were tested individually for their ability to elicit this effect. A low-molecular-weight fraction of hemolysate, ranging from 0.5 to 2.0 kD, elicited only a mild contraction. However, when this fraction was combined with purified oxyHb, the contractile response was comparable in magnitude to that of unfractionated hemolysate. These studies confirm that purified oxyHb is capable of inducing contraction in vitro. The data also demonstrate that oxyHb elicits a significantly weaker contraction than does hemolysate. In addition, the results suggest that low-molecular-weight components in hemolysate (in the 0.5- to 2.0-kD range), while incapable of inducing a potent contraction alone, may act in concert with oxyHb to elicit the vasoconstriction seen following subarachnoid hemorrhage.


2013 ◽  
Vol 83 (5) ◽  
pp. 858-863 ◽  
Author(s):  
Enver Yetkiner ◽  
Florian Just Wegehaupt ◽  
Rengin Attin ◽  
Thomas Attin

ABSTRACT Objective: To test the null hypothesis that combining low-viscosity caries infiltrant with conventional adhesive resins would not improve sealing of sound enamel against demineralization in vitro. Materials and Methods: Bovine enamel discs (N  =  60) with diameter of 3 mm were randomly assigned to six groups (n  =  10). The discs were etched with 37% phosphoric acid for 30 seconds and treated with resins of different monomer content forming the following groups: (1) Icon (DMG), (2) Transbond XT Primer (3M ESPE), (3) Heliobond (Ivoclar Vivadent), (4) Icon + Transbond XT Primer, and (5) Icon + Heliobond. Untreated etched samples served as the negative control. Specimens were subjected to demineralization by immersion in hydrochloric acid (pH 2.6) for 80 hours. Calcium dissolution into the acid was assessed by colorimetric analysis using Arsenazo III method at 16-hour intervals. Groups presenting high protection against demineralization were subjected to further acidic challenge for 15 days with calcium measurements repeated at 24-hour intervals. Data were analyzed by Kruskal-Wallis test and Mann-Whitney U-test. Results: Untreated specimens showed the highest amount of demineralization. Icon and Transbond XT primer decreased the mineral loss significantly compared to the control. Heliobond performed significantly better than both Icon and Transbond XT primer. Combination of Icon both with Transbond XT primer or Heliobond served as the best protective measures and maintained the protective effect for the additional 15-day acidic challenge. Conclusions: Within the limitations of this in vitro study, it could be concluded that the use of low-viscosity caries infiltrant prior to application of the tested conventional adhesives increases their protective effect against demineralization.


2019 ◽  
Vol 43 ◽  
Author(s):  
Maxwell Paca Matos ◽  
Juan Lopes Teixeira ◽  
Brenno Lima Nascimento ◽  
Sandro Griza ◽  
Francisco Sandro Rodrigues Holanda ◽  
...  

ABSTRACT The demand for biodegradable composite has grown worldwide in recent years, mainly in order to reduce environmental contamination by structural materials produced from the oil industry. The objective of this study was to evaluate the growth of isolates from the edible mushroom “Shiitake” (Lentinula edodes) in substrate coconut powder-based supplemented with wheat bran, as well as to analyze the influence of fungi growing period and drying time of the colonized substrate on the mechanical properties of the composite, in order to produce a biodegradable composite. The mycelial density is not influenced by the type of hyphae of L. edodes. Drying of the composite does not influence the residual odor, depending on the isolate. The compressive strength and foam type of the fungal composite may be influenced by the culture period and type of hyphae, depending on the fungal isolate. The composites colonized by the L. edodes isolates presented higher mechanical resistance at 30 days of complete colonization. The coconut powder supplemented with wheat bran colonized by isolated fungi LED 96/18 is an ecological alternative in the packaging production considering its mechanical properties.


2016 ◽  
Vol 50 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Yang Yang ◽  
Xueping Lv ◽  
Wenyuan Shi ◽  
Xuedong Zhou ◽  
Jiyao Li ◽  
...  

The biomimetic peptide 8DSS has shown beneficial effects in promoting remineralization of demineralized enamel in vitro. Here we examined the ability of 8DSS alone and in combination with fluoride to inhibit enamel demineralization during pH-cycling mimicking intraoral conditions. Enamel blocks were subjected to 9 days of pH-cycling in the presence of 1,000 ppm NaF (positive control), distilled-deionized water (DDW; negative control), 25 μM 8DSS alone, 25 μM 8DSS with 500 ppm NaF (8DSS-FL) or 25 μM 8DSS with 1,000 ppm NaF (8DSS-FH) twice daily for 1 min each time. The blocks were analyzed in terms of surface microhardness (SMH), fluoride uptake and mineral content. The 8DSS-treated blocks showed significantly lower mineral loss, shallower lesions and higher SMH than the DDW-treated blocks. No significant differences were observed between the blocks treated with 8DSS alone or fluoride alone. The blocks treated with 8DSS alone or DDW showed similar amounts of fluoride uptake, which was the lowest of all the treatment groups. The blocks treated with 8DSS-FL or 8DSS-FH did not differ significantly, and both groups showed significantly greater SMH and fluoride uptake as well as significantly lower mineral loss and shallower lesions than the NaF-treated blocks. Mineral content was significantly higher in the 8DSS-treated blocks than in the DDW-treated blocks from the surface layer (10 µm) to the lesion depth (110 µm), and it was significantly higher in the blocks treated with 8DSS-FL or 8DSS-FH than in the NaF-treated blocks from 10 to 90 µm. These findings illustrate the potential of 8DSS for inhibiting enamel demineralization and for enhancing the anticaries effect of NaF.


Sign in / Sign up

Export Citation Format

Share Document