scholarly journals Determining Contact Angle and Surface Energy of Co60Fe20B20Thin Films by Magnetron Sputtering

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
S. K. Wang ◽  
Yuan-Tsung Chen ◽  
S. R. Jian

This study examined the deposition of CoFeB thin films on a glass substrate at room temperature (RT), as well as the effects of conducting postannealing at heat annealingTA=150°C for 1 h. The thickness (tf) of the CoFeB thin films ranged from 100 Å to 500 Å. The microstructure, average contact angle, and surface energy properties were also investigated. X-ray diffraction (XRD) revealed that CoFeB films are nanocrystalline at RT and that post-annealing treatment increases in conjunction with the crystallinity. The surface energy of the CoFeB thin films is related to adhesive strength. The CoFeB films form a contact angle of larger than90∘with water as a test liquid. This finding demonstrates that the CoFeB film is hydrophobic. Astfincreases from 100 Å to 500 Å, the surface energy at RT decreases from 40 mJ/mm2to 32 mJ/mm2. During post-annealing treatment, the surface energy increases from 32 mJ/mm2to 35 mJ/mm2, astfincreases from 100 Å to 300 Å; then it decreases to 31 mJ/mm2, astfincreases from 300 Å to 500 Å. The surface energy of the as-deposited CoFeB thin films exceeds that during post-annealing treatment at thicknesses of 100 Å and 200 Å, suggesting that as-deposited CoFeB thin film increases the adhesion.

2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2005 ◽  
Vol 879 ◽  
Author(s):  
M. Abid ◽  
C. Terrier ◽  
J-P Ansermet ◽  
K. Hjort

AbstractFollowing the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.


2009 ◽  
Vol 79-82 ◽  
pp. 747-750 ◽  
Author(s):  
Dong Qing Liu ◽  
Wen Wei Zheng ◽  
Hai Feng Cheng ◽  
Hai Tao Liu

Thermochromic vanadium dioxide (VO2) exhibits a semi-conducting to metallic phase transition at about 68°C, involving strong variations in electrical and optical properties. A simple method was proposed to prepare VO2 thin films from easily gained V2O5 thin films. The detailed thermodynamic calculation was done and the results show that V2O5 will decompose to VO2 when the post annealing temperature reaches 550°C at the atmospheric pressure of less than 0.06Pa. The initial V2O5 films were prepared by sol-gel method on fused-quartz substrates. Different post annealing conditions were studied. The derived VO2 thin film samples were characterized using X-ray diffraction and X-ray photoelectron spectroscopy. The electrical resistance and infrared emissivity of VO2 thin films under different temperatures were measured. The results show that the VO2 thin film derived from the V2O5 thin film annealed at 550°C for 10 hours is pure dioxide of vanadium without other valences. It was observed that the resistance of VO2 thin film with thickness about 600nm can change by 4 orders of magnitude and the 7.5-14μm emissivity can change by 0.6 during the phase transition.


2017 ◽  
Vol 268 ◽  
pp. 229-233
Author(s):  
A.R. Nurhamizah ◽  
Zuhairi Ibrahim ◽  
Rosnita Muhammad ◽  
Yussof Wahab ◽  
Samsudi Sakrani

This research aims to study the growth and the effect of annealing temperature on the structural properties of Platinum/YSZ/Platinum thin film. The thin films were prepared by RF and DC magnetron sputtering method utilized platinum as electrodes (anode and cathode) and YSZ as electrolyte. Two temperatures of annealing (400 and 600 °C) were conducted onto Platinum/YSZ/Platinum thin film for comparison in this study. Crystalline phase, microstructure and thickness of thin films were evaluated using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) technique. Results show that Pt/YSZ/Pt thin film without post-annealing gives a better morphology and crystal phase.


2010 ◽  
Vol 445 ◽  
pp. 160-163
Author(s):  
Shigeki Sawamura ◽  
Naonori Sakamoto ◽  
De Sheng Fu ◽  
Kazuo Shinozaki ◽  
Hisao Suzuki ◽  
...  

Thermal stability of bottom electrode thin films (La0.5Sr0.5)CoO3 (LSCO) and (La0.6Sr0.4)MnO3 (LSMO) were investigated. The crystallization and surface morphology of the heterostructure were characterized using x-ray diffraction and atomic force microscopy. Resistivity of the LSCO thin film was 25 cm. However, the resistivity of LSCO thin film increases sharply with annealing temperature. The LSMO thin film has high resistivity (100 mcm). The film does not decompose after thermal processing at 900 °C. To confirm thermal stability, we examined the effect of post annealing at various temperatures on the morphology and resistivity. Results showed that LSMO has higher thermal stability than that of LSCO.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 987
Author(s):  
Wen-Jen Liu ◽  
Yung-Huang Chang ◽  
Yuan-Tsung Chen ◽  
Yi-Chen Chiang ◽  
Yu-Chi Liu ◽  
...  

The structure, magnetic properties, optical properties and adhesion efficiency of CoFeBY films were studied. Co40Fe40B10Y10 alloy was sputtered onto Si (100) with a thickness of 10–50 nm, and then annealed at room temperature, 100 °C, 200 °C and 300 °C for 1 h. X-ray diffraction (XRD) showed that the CoFeBY films deposited at room temperature are amorphous. Annealing at 100 °C gave the films enough thermal energy to change the structure from amorphous to crystalline. After annealing, the CoFeBY thin film showed a body-centered cubic (BCC) CoFeB (110) characteristic peak at 44°. However, the low-frequency alternative-current magnetic susceptibility (χac) and saturation magnetization (MS) increased with the increase of thickness. CoFeBY thin films had the highest χac and MS after annealing at 300 °C compared to that at other temperatures. After annealing at 300 °C, the surface energy of CoFeBY film is the maximum at 50 nm. Higher surface energy indicated stronger adhesion.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


Sign in / Sign up

Export Citation Format

Share Document