scholarly journals Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles

2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Azamjon B. Soliev ◽  
Kakushi Hosokawa ◽  
Keiichi Enomoto

Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. Chemical structures of the bioactive compounds discussed are also presented.

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 610
Author(s):  
Junjie Yan ◽  
Weiwei Liu ◽  
Jiatong Cai ◽  
Yiming Wang ◽  
Dahong Li ◽  
...  

Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 569
Author(s):  
Zhaoming Liu ◽  
Hongxin Liu ◽  
Weimin Zhang

Natural polypropionates (PPs) are a large subgroup of polyketides with diverse structural features and bioactivities. Most of the PPs are discovered from marine organisms including mollusks, fungi and actinomycetes, while some of them are also isolated from terrestrial resources. An increasing number of studies about PPs have been carried out in the past two decades and an updated review is needed. In this current review, we summarize the chemical structures and biological activities of 164 natural PPs reported in 67 research papers from 1999 to 2020. The isolation, structural features and bioactivities of these PPs are discussed in detail. The chemical diversity, bioactive diversity, biodiversity and the relationship between chemical classes and the bioactivities are also concluded.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 330
Author(s):  
Timofey V. Malyarenko ◽  
Alla A. Kicha ◽  
Valentin A. Stonik ◽  
Natalia V. Ivanchina

Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terrestrial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete information on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 321 ◽  
Author(s):  
Minghua Jiang ◽  
Zhenger Wu ◽  
Heng Guo ◽  
Lan Liu ◽  
Senhua Chen

Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.


2021 ◽  
Vol 33 (9) ◽  
pp. 1957-1975
Author(s):  
Akhalesh Kumar ◽  
Rakhi Mishra ◽  
Avijit Mazumder ◽  
Rupa Mazumder ◽  
Arun Kumar

This review paper focuses on the different synthetic methodologies that researchers have adopted to synthesize various thiosemicarbazide derivatives with different biological activities of synthesized compounds in the last 20 years. Most of the investigations available in the literature are directed to the biological activities of thiosemicarbazide derivatives with less discussion on its synthetic schemes. This review article presents various reaction scheme, which has been adopted for thiosemicarbazide derivative synthesis along with the reported pharmacological activities of synthesized analogs. The available literature in the article aims to encourage more studies on the synthesis of thiosemicarbazide derivatives, which will help for drug discovery having thiosemicarbazide nucleus.


2020 ◽  
Vol 17 (8) ◽  
pp. 661-670
Author(s):  
Mohamed Ahmed Elian Sophy ◽  
Mohamed Ahmed Mahmoud Abdel Reheim

Aim and Objective: According to the literature survey, pyrazole is a unique template that is associated with several biological activities. This article highlighted the research work of many researchers reported in the literature for synthesis and different pharmacological activities of the pyrazole nucleus. In the present work, pyrazol- 3-one 1 was reacted with cyanoacetic acid hydrazide and elemental sulfur to afford the corresponding thieno[3,2-c]pyrazol-6-carbohydrazide 3 derivatives. The latter compound reacted with some electrophilic reagents such as DMF-DMA, triethylorthoformate, arylidenemalononitriles and chalcones under neat conditions to give substituted oxadiazole and pyrazole, respectively. The treatment of compound 3 with active methylene reagents such as acetylacetone, diethylmalonate, ethyl acetoacetate and ethyl cyanoacetate under suitable conditions afforded pyrazole derivatives 10, 11, 13, and 15, respectively. Novel pyrazolothienopyrimidine 27 and 30 were prepared from precursor 26 with carbon disulfide and triethylorthoformate, respectively. The chemical structures of the newly synthesized compounds were established by elemental and spectral analyses including IR, and 1HNMR in addition to 13C-NMR and mass spectra. Materials and Methods: A novel substituted pyrazole, pyrimidine and pyrazolothienopyrimidine were obtained via Gewald synthesis of thiophene and fused thiophene and Mannich reactions of 5-amino-3-phenyl-1Hthieno[ 3,2-c]pyrazole-6-carbohydrazide. Results and Discussion: A series of some newly azoles and azines were prepared via reaction of thieno[3,2- c]pyrazol-6-carbohydrazide derivative 3 as starting material with some electrophilic and nucleophilic reagents. The structures of target compounds were established by elemental analyses and spectral data. Conclusion: Pyrazole is a unique template that is associated with several biological activities. This article highlighted the research work of many researchers reported in the literature for synthesis and different pharmacological activities of the pyrazole nucleus. In the current investigation, we have developed new and efficient methods for the synthesis of thieno[3,2-c]pyrazol-6-carbohydrazide derivatives. In addition, we have explored the preparative potential of these substances as intermediates for the synthesis of substituted pyrazoles and fused pyrazoles 10-30, respectively.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 558
Author(s):  
Sergey A. Dyshlovoy

The natural compounds derived from marine organisms often exhibit unique chemical structures and potent biological activities. Cancer-preventive activity is one of the rather new activities that has emerged and been extensively studied over the last decades. This review summarizes the recent updates on the marine chemopreventive compounds covering the relevant literature published in 2013–2021 and following the previous comprehensive review by Stonik and Fedorov (Marine Drugs 2014, 12, 636–671). In the current article, only the molecules having an effect on malignant transformation (or related pathway and molecules), cancer stem cells, or carcinogen-induced in vivo tumor development were considered to be “true” cancer-preventive compounds and were, therefore, reviewed. Additionally, particular attention has been given to the molecular mechanisms of chemoprevention, executed by the reported marine compounds.


2018 ◽  
Vol 1 (T5) ◽  
pp. 95-101
Author(s):  
Ngan Thi Kim Tran ◽  
Ly Thi Le ◽  
Nhi Thi Y Nguyen ◽  
Minh Thi Tran ◽  
Quan Le Tran

Euphorbia hirta Linn. (co sua la lon in Vietnamese) belongs to Euphorbiaceae family, is a group of small prostrate herbaceous annual weed in Vietnam. It is abundant in waste places and open grasslands and distributes in most Asian countries. E. hirta is traditionally used in the treatment of gastrointestinal disorders, bronchial and respiratory. The aqueous extract exhibits anxiolytic, analgesic, antipyretic, and anti-inflammatory activities. Strong anti-diabetic activity of Euphorbiaceae family in general and E. hirta in particular was reported in the past investigations. E. hirta has been studied by various investigations and several active constituents have been isolated and identified successfully. Most of those compounds have strong biological activities. At the first step in the processing of the isolation of bioactive compounds from the ethyl acetate extract, we isolated four purified compounds, including methyl gallate (1), quercetin (2), myrecitin (3), and quercitrin (4). The chemical structures of those compounds were elucidated by spectroscopic methods and compared with published data in the literature.


2019 ◽  
Vol 19 (10) ◽  
pp. 809-825 ◽  
Author(s):  
Qing-Shan Li ◽  
Yao Li ◽  
Girdhar Singh Deora ◽  
Ban-Feng Ruan

Resveratrol is a non-flavonoid polyphenol containing a terpenoid backbone. It has been intensively studied because of its various promising biological properties, such as anticancer, antioxidant, antibacterial, neuroprotective and anti-inflammatory activities. However, the medicinal application of resveratrol is constrained by its poor bioavailability and stability. In the past decade, more attention has been focused on making resveratrol derivatives to improve its pharmacological activities and pharmacokinetics. This review covers the literature published over the past 15 years on synthetic analogues of resveratrol. The emphasis is on the chemistry of new compounds and relevant biological activities along with structure-activity relationship. This review aims to provide a scientific and reliable basis for the development of resveratrol-based clinical drugs.


2020 ◽  
Vol 17 (7) ◽  
pp. 780-794
Author(s):  
Nurhayatun S. Abdul Razak ◽  
Joazaizulfazli Jamalis ◽  
Subhash Chander ◽  
Roswanira Abdul Wahab ◽  
Deepak P. Bhagwat ◽  
...  

Coumarin and oxadiazole moieties ubiquitously occur in a wide range of natural products and are valued for their varied and beneficial pharmacological activities. Herein, this review focuses on various documented techniques used by researchers to synthesize an assortment of biologically active coumarin-oxadiazole scaffolds. Also, the common techniques discussed are used to establish the wide-range of biological activities of the synthesized coumarin and oxadiozole derivatives, including; antioxidant, anthelmintic, antimicrobial, anti-tuberculosis, analgesic, anti-inflammatory, cytotoxicity and anticonvulsant. Additionally, the current, well-established drugs synthesized using coumarin-oxadiazole scaffolds are typically dispensed in regular clinical practice are also highlighted in this review paper.


Sign in / Sign up

Export Citation Format

Share Document