scholarly journals Energy Efficient MAC Protocol for Low-Energy Critical Infrastructure Monitoring Networks Using Wakeup Radio

2012 ◽  
Vol 8 (4) ◽  
pp. 504946 ◽  
Author(s):  
Niamat Ullah ◽  
M. Sanaullah Chowdhury ◽  
Mosaddique Al Ameen ◽  
Kyung Sup Kwak

Critical infrastructure monitoring applications are rapidly increasing. Application requirements include reliable data transfer, energy efficiency, and long deployment lifetime. These applications must also be able to operate in an extremely low-cost communication environment in order to be attractive to potential users. A low rate wireless personal area network can help control and manage the operations of such applications. In this paper, we present a medium access control (MAC) protocol for low-energy critical infrastructure monitoring (LECIM) applications. The proposed MAC protocol is based on a framed slotted aloha multiple access schemes. For downlink communication, we use a wakeup radio approach to avoid complex bookkeeping associated with the traditional MAC protocols. Analytical expressions for power consumption and delay are derived to analyze and compare the performance of our proposed protocol with the existing well-known T-MAC, B-MAC, X-MAC, ZigBee, and WiseMAC protocols. It is shown that our proposed protocol outperforms all the other protocols in terms of power consumption and delay.

2012 ◽  
Vol 27 (10) ◽  
pp. 1783-1797 ◽  
Author(s):  
M. Sanaullah Chowdhury ◽  
Niamat Ullah ◽  
Mosaddique Al Ameen ◽  
Kyung Sup Kwak

2015 ◽  
Vol 24 (03) ◽  
pp. 1550040 ◽  
Author(s):  
V. Vinod Kumar ◽  
M. Meenakshi

This paper presents the design and simulation results for a Federal Communication Committee (FCC) complaint current starved delay line based Ultra Wide Band (UWB) Gaussian pulse transmitter, which is designed for operating in the 3.1–10.6 GHz range. The wavelet is a mono cycle Gaussian impulse wave, which is practically well suited for low cost, low power, low data rate wireless data transfer such as in wireless body area network (WBAN) applications. The transmitter operating frequency and bandwidth (BW) is controlled using a dc voltage provided at the input stage of a voltage controlled delay line (VCDL) and this aspect can be exploited for increasing the communication coverage area without compromising on the power consumption. A Gaussian wave shaping is performed for FCC compliance and the simulation has been carried out with 130 nm technology. The simulation of our design suggests an average dynamic power consumption of 1.11 mw for an energy efficiency of 14.2 pJ/pulse. The proposed IR-UWB transmitter design though a bit inferior in terms of the power efficiency, can claim superior performance with respect to tuning the BW, which is very relevant in a cognitive wireless networking scenario with other interfering signals.


2017 ◽  
Author(s):  
Michael Mueller ◽  
Jonas Meyer ◽  
Christoph Hueglin

Abstract. This study focuses on the investigation and quantification of low-cost sensor performance in application fields such as the extension of traditional air quality monitoring networks or the replacement of diffusion tubes. For this, sensor units consisting of two boxes featuring NO2 and O3 low-cost sensors and wireless data transfer were engineered. The sensor units were initially operated at air quality monitoring sites for three months for performance analysis and initial calibration. Afterwards, they were relocated and operated within a sensor network consisting of six locations for more than one year. Our analyses show that the employed O3 and NO2 sensors can be accurate to 2–5 and 5–7 ppb, respectively, during the first three months of operation. This accuracy, however, could not be maintained during their operation within the sensor network related to changes in sensor behaviour. Hence, the low-cost sensors in our configuration do not reach the accuracy level of NO2 diffusion tubes. Tests in the laboratory revealed that changes in relative humidity can impact the signal of the employed NO2 sensors similarly as changes in ambient NO2 concentration. All the employed low-cost sensors need to be individually calibrated. Best performance of NO2 sensors is achieved when the calibration models include also time dependent parameters accounting for changes in sensor response over time. Accordingly, an effective procedure for continuous data control and correction is essential for obtaining meaningful data. It is demonstrated that linking the measurements from low-cost sensors to the high quality measurements from routine air quality monitoring stations is an effective procedure for both tasks provided that time periods can be identified when pollutant concentrations can be accurately predicted at sensor locations.


Author(s):  
S. P. Anandaraj ◽  
S. Poornima

A typical WSN contains spatially distributed sensors that can cooperatively monitor the environment conditions, like second, temperature, pressure, motion, vibration, pollution and so forth. WSN applications have been used in several important areas, such as health care, military, critical infrastructure monitoring, environment monitoring, and manufacturing. At the same time. WSN Have some issues like memory, energy, computation, communication, and scalability, efficient management. So, there is a need for a powerful and scalable high-performance computing and massive storage infrastructure for real-time processing and storing the WSN data as well as analysis (online and offline) of the processed information to extract events of interest. In this scenario, cloud computing is becoming a promising technology to provide a flexible stack of massive computing, storage, and software services in ascalable and virtualized manner at low cost. Therefore, sensor-cloud (i.e. an integrated version of WSN & cloud computing) infrastructure is becoming popular nowadays that can provide an open flexible, and reconfigurable platform for several monitoring and controlling applications.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3257 ◽  
Author(s):  
Akram Jebril ◽  
Aduwati Sali ◽  
Alyani Ismail ◽  
Mohd Rasid

As a possible implementation of a low-power wide-area network (LPWAN), Long Range (LoRa) technology is considered to be the future wireless communication standard for the Internet of Things (IoT) as it offers competitive features, such as a long communication range, low cost, and reduced power consumption, which make it an optimum alternative to the current wireless sensor networks and conventional cellular technologies. However, the limited bandwidth available for physical layer modulation in LoRa makes it unsuitable for high bit rate data transfer from devices like image sensors. In this paper, we propose a new method for mangrove forest monitoring in Malaysia, wherein we transfer image sensor data over the LoRa physical layer (PHY) in a node-to-node network model. In implementing this method, we produce a novel scheme for overcoming the bandwidth limitation of LoRa. With this scheme the images, which requires high data rate to transfer, collected by the sensor are encrypted as hexadecimal data and then split into packets for transfer via the LoRa physical layer (PHY). To assess the quality of images transferred using this scheme, we measured the packet loss rate, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index of each image. These measurements verify the proposed scheme for image transmission, and support the industrial and academic trend which promotes LoRa as the future solution for IoT infrastructure.


2014 ◽  
Vol 10 (2) ◽  
pp. 90 ◽  
Author(s):  
Anouar Darif ◽  
Rachid Saadane ◽  
Driss Aboutajdine

Synchronization is an important issue in multi hops Wireless Sensor Networks (WSN). Such networks are known by their limited resources of energy, storage, computation, and bandwidth. In addition if the networks entities are deployed with high density, it makes the synchronization mandatory for these networks. Impulse Radio Ultra Wide Band (IR-UWB) technology is a promising solution for this kind of networks due to its various advantages such as its robustness to severe multipath fading even in indoor environments, its low cost, low complexity, and low power consumption. To exploit the specific features of this technology, we need a convenient MAC protocol. WideMac was presented as a new low power consumption MAC protocol designed for WSN using IR-UWB transceivers. Because of the luck of synchronization in this protocol, this paper presents a solution for the synchronization problem especially in the case of no communication between the Network’s nodes. To implement and evaluate the proposed synchronization mechanism, we used MiXiM platform under OMNet++ Simulator.


Sign in / Sign up

Export Citation Format

Share Document