scholarly journals Oxidative Stress, Mitochondrial Dysfunction, and Aging

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Hang Cui ◽  
Yahui Kong ◽  
Hong Zhang

Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed, including the free-radical and mitochondrial theories of aging. Both theories speculate that cumulative damage to mitochondria and mitochondrial DNA (mtDNA) caused by reactive oxygen species (ROS) is one of the causes of aging. Oxidative damage affects replication and transcription of mtDNA and results in a decline in mitochondrial function which in turn leads to enhanced ROS production and further damage to mtDNA. In this paper, we will present the current understanding of the interplay between ROS and mitochondria and will discuss their potential impact on aging and age-related diseases.

2019 ◽  
Vol 20 (18) ◽  
pp. 4472 ◽  
Author(s):  
Zuo ◽  
Prather ◽  
Stetskiv ◽  
Garrison ◽  
Meade ◽  
...  

It has been proposed that a chronic state of inflammation correlated with aging known as inflammaging, is implicated in multiple disease states commonly observed in the elderly population. Inflammaging is associated with over-abundance of reactive oxygen species in the cell, which can lead to oxidation and damage of cellular components, increased inflammation, and activation of cell death pathways. This review focuses on inflammaging and its contribution to various age-related diseases such as cardiovascular disease, cancer, neurodegenerative diseases, chronic obstructive pulmonary disease, diabetes, and rheumatoid arthritis. Recently published mechanistic details of the roles of reactive oxygen species in inflammaging and various diseases will also be discussed. Advancements in potential treatments to ameliorate inflammaging, oxidative stress, and consequently, reduce the morbidity of multiple disease states will be explored.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 233
Author(s):  
Tasuku Konno ◽  
Eduardo Pinho Melo ◽  
Joseph E. Chambers ◽  
Edward Avezov

Reactive oxygen species (ROS) are produced continuously throughout the cell as products of various redox reactions. Yet these products function as important signal messengers, acting through oxidation of specific target factors. Whilst excess ROS production has the potential to induce oxidative stress, physiological roles of ROS are supported by a spatiotemporal equilibrium between ROS producers and scavengers such as antioxidative enzymes. In the endoplasmic reticulum (ER), hydrogen peroxide (H2O2), a non-radical ROS, is produced through the process of oxidative folding. Utilisation and dysregulation of H2O2, in particular that generated in the ER, affects not only cellular homeostasis but also the longevity of organisms. ROS dysregulation has been implicated in various pathologies including dementia and other neurodegenerative diseases, sanctioning a field of research that strives to better understand cell-intrinsic ROS production. Here we review the organelle-specific ROS-generating and consuming pathways, providing evidence that the ER is a major contributing source of potentially pathologic ROS.


Pathobiology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Naoyuki Matsumoto ◽  
Daisuke Omagari ◽  
Ryoko Ushikoshi-Nakayama ◽  
Tomoe Yamazaki ◽  
Hiroko Inoue ◽  
...  

<b><i>Introduction:</i></b> Type-2 diabetes mellitus (T2DM) is associated with several systemic vascular symptoms and xerostomia. It is considered that hyperglycemia-induced polyuria and dehydration cause decreased body-water volume, leading to decreased saliva secretion and, ultimately, xerostomia. In T2DM, increased production of reactive oxygen species (ROS) causes tissue damage to vascular endothelial cells as well as epithelial tissue, including pancreas and cornea. Hence, a similar phenomenon may occur in other tissues and glands in a hyperglycemic environment. <b><i>Methods:</i></b> Salivary gland tissue injury was examined, using T2DM model mouse (db/db). Transferase‐mediated dUTP nick‐end labeling (TUNEL) was conducted to evaluate tissue injury. The levels of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine, Bax/Bcl-2 ratio were measured as indicator of oxidative stress. Moreover, in vitro ROS production and cell injury was evaluated by mouse salivary gland-derived normal cells under high-glucose condition culture. <b><i>Results:</i></b> In vivo and in vitro analysis showed a higher percentage of TUNEL-positive cells and higher levels of MDA and 8-hydroxy-2′-deoxyguanosine in salivary gland tissue of db/db mice. This suggests damage of saliva secretion-associated lipids and DNA by hyperglycemic-induced oxidative stress. To analyze the mechanism by which hyperglycemia promotes ROS production, mouse salivary gland-derived cells were isolated. The cell culture with high-glucose medium enhanced ROS production and promotes apoptotic and necrotic cell death. <b><i>Conclusion:</i></b> These findings suggest a novel mechanism whereby hyperglycemic-induced ROS production promotes salivary gland injury, resulting in hyposalivation.


2007 ◽  
Vol 102 (6) ◽  
pp. 2379-2388 ◽  
Author(s):  
Thomas L. Clanton

The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of Po2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.


2016 ◽  
Vol 198 (11) ◽  
pp. 1563-1575 ◽  
Author(s):  
Kieran D. Collins ◽  
Tessa M. Andermann ◽  
Jenny Draper ◽  
Lisa Sanders ◽  
Susan M. Williams ◽  
...  

ABSTRACTCytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor isHelicobacter pyloriTlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all testedH. pyloristrains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allowH. pylorito avoid areas of the stomach with high concentrations of reactive oxygen species.IMPORTANCEHelicobacter pylorisenses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aidsH. pyloriin encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions.H. pyloriencounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.


2010 ◽  
Vol 23 (8) ◽  
pp. 1012-1021 ◽  
Author(s):  
Carole Dubreuil-Maurizi ◽  
Sophie Trouvelot ◽  
Patrick Frettinger ◽  
Alain Pugin ◽  
David Wendehenne ◽  
...  

The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by β-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase–dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem.


2021 ◽  
pp. 19-27
Author(s):  
S. I. Gamidov ◽  
T. V. Shatylko ◽  
A. Yu. Popova ◽  
N. G. Gasanov ◽  
R. S. Gamidov

Oxidative stress is one of the leading causes of sperm dysfunction. Excessive amounts of reactive oxygen species can damage sperm membranes and disrupt their DNA integrity, which affects not only the likelihood of getting pregnant naturally, but also the clinical outcomes of assisted reproductive technologies and the risk of miscarriage. Sperm cells are extremely vulnerable to oxidative stress, given the limited functional reserve of their antioxidant systems and the DNA repair apparatus. Lifestyle factors, most of which are modifiable, often trigger generation of reactive oxygen species.  Both the lifestyle modification and use of antioxidant dietary supplements are adequate and compatible ways to combat male oxidative stress-associated infertility. The search for other internal and external sources of reactive oxygen species, the identification of the etiology of oxidative stress and treatment of respective diseases are necessary for the successful regulation of redox processes in the male reproductive system in clinical practice, which is required not only to overcome infertility, but also to prevent induced epigenetic disorders in subsequent generations. The article presents the analysis of the molecular mechanisms of male idiopathic infertility. The authors provide an overview of how to prevent oxidative stress as one of the causes of subfebrile fever. The article provides an overview of modern therapeutics, as well as the options for eliminating the consequences of the effect of reactive oxygen species on spermatogenesis and male reproductive system in general.


2021 ◽  
Author(s):  
◽  
Natelle C H Quek

<p>Natural products offer vast structural and chemical diversity highly sought after in drug discovery research. Saccharomyces cerevisiae makes an ideal model eukaryotic organism for drug mode-of-action studies owing to ease of growth, sophistication of genetic tools and overall homology to higher eukaryotes. Equisetin and a closely related novel natural product, TA-289, are cytotoxic to fermenting yeast, but seemingly less so when yeast actively respire. Cell cycle analyses by flow cytometry revealed a cell cycle block at S-G2/M phase caused by TA-289; previously described oxidative stress-inducing compounds causing cell cycle delay led to further investigation in the involvement of equisetin and TA-289 in mitochondrial-mediated generation of reactive oxygen species. Chemical genomic profiling involving genome-wide scans of yeast deletion mutant strains for TA-289 sensitivity revealed sensitization of genes involved in the mitochondria, DNA damage repair and oxidative stress responses, consistent with a possible mechanism-of-action at the mitochondrion. Flow cytometric detection of reactive oxygen species (ROS) generation caused by TA-289 suggests that the compound may induce cell death via ROS production. The generation of a mutant strain resistant to TA-289 also displayed resistance to a known oxidant, H2O2, at concentrations that were cytotoxic to wild-type cells. The resistant mutant displayed a higher basal level of ROS production compared to the wild-type parent, indicating that the resistance mutation led to an up-regulation of antioxidant capacity which provides cell survival in the presence of TA-289. Yeast mitochondrial morphology was visualized by confocal light microscopy, where it was observed that cells treated with TA-289 displayed abnormal mitochondria phenotypes, further indicating that the compound is acting primarily at the mitochondrion. Similar effects observed with equisetin treatment suggest that both compounds share the same mechanism, eliciting cell death via ROS production in the mitochondrial respiratory chain.</p>


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 235
Author(s):  
Shaiesh Yogeswaran ◽  
Thivanka Muthumalage ◽  
Irfan Rahman

Studies have shown that aerosols generated from flavored e-cigarettes contain Reactive Oxygen Species (ROS), promoting oxidative stress-induced damage within pulmonary cells. Our lab investigated the ROS content of e-cigarette vapor generated from disposable flavored e-cigarettes (vape bars) with and without nicotine. Specifically, we analyzed vape bars belonging to multiple flavor categories (Tobacco, Minty Fruit, Fruity, Minty/Cool (Iced), Desserts, and Drinks/Beverages) manufactured by various vendors and of different nicotine concentrations (0–6.8%). Aerosols from these vape bars were generated via a single puff aerosol generator; these aerosols were then individually bubbled through a fluorogenic solution to semi-quantify ROS generated by these bars in H2O2 equivalents. We compared the ROS levels generated by each vape bar as an indirect determinant of their potential to induce oxidative stress. Our results showed that ROS concentration (μM) within aerosols produced from these vape bars varied significantly among different flavored vape bars and identically flavored vape bars with varying nicotine concentrations. Furthermore, our results suggest that flavoring chemicals and nicotine play a differential role in generating ROS production in vape bar aerosols. Our study provides insight into the differential health effects of flavored vape bars, in particular cool (iced) flavors, and the need for their regulation.


Author(s):  
Farhan Rizvi ◽  
Claudia C. Preston ◽  
Larisa Emelyanova ◽  
Mohammed Yousufuddin ◽  
Maria Viqar ◽  
...  

Background Age‐related heart diseases are significant contributors to increased morbidity and mortality. Emerging evidence indicates that mitochondria within cardiomyocytes contribute to age‐related increased reactive oxygen species (ROS) generation that plays an essential role in aging‐associated cardiac diseases. Methods and Results The present study investigated differences between ROS production in cardiomyocytes isolated from adult (6 months) and aged (24 months) Fischer 344 rats, and in cardiac tissue of adult (18–65 years) and elderly (>65 years) patients with preserved cardiac function. Superoxide dismutase inhibitable ferricytochrome c reduction assay (1.32±0.63 versus 0.76±0.31 nMol/mg per minute; P =0.001) superoxide and H 2 O 2 production, measured as dichlorofluorescein diacetate fluorescence (1646±428 versus 699±329, P =0.04), were significantly higher in the aged versus adult cardiomyocytes. Similarity in age‐related alteration between rats and humans was identified in mitochondrial‐electron transport chain‐complex‐I‐associated increased oxidative‐stress by MitoSOX fluorescence (53.66±18.58 versus 22.81±12.60; P =0.03) and in 4‐HNE adduct levels (187.54±54.8 versus 47.83±16.7 ng/mg protein, P =0.0063), indicative of increased peroxidation in the elderly. These differences correlated with changes in functional enrichment of genes regulating ROS homeostasis pathways in aged human and rat hearts. Functional merged collective network and pathway enrichment analysis revealed common genes prioritized in human and rat aging‐associated networks that underlay enriched functional terms of mitochondrial complex I and common pathways in the aging human and rat heart. Conclusions Aging sensitizes mitochondrial and extramitochondrial mechanisms of ROS buildup within the heart. Network analysis of the transcriptome highlights the critical elements involved with aging‐related ROS homeostasis pathways common in rat and human hearts as targets.


Sign in / Sign up

Export Citation Format

Share Document