scholarly journals 2D Simulation of Nd2Fe14B/α-Fe Nanocomposite Magnets with Random Grain Distributions Generated by a Monte Carlo Procedure

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Nguyen Xuan Truong ◽  
Nguyen Trung Hieu ◽  
Vu Hong Ky ◽  
Nguyen Van Vuong

The magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets consisting of two nanostructured hard and soft magnetic grains assemblies were simulated for 2D case with random grain distributions generated by a Monte Carlo procedure. The effect of the soft phase volume fraction on the remanenceBr, coercivityHc, squarenessγ, and maximum energy product(BH)maxhas been simulated for the case of Nd2Fe14B/α-Fe nanocomposite magnets. The simulation results showed that, for the best case, the(BH)maxcan be gained up only a several tens of percentage of the origin hard magnetic phase, but not about hundred as theoretically predicted value. The main reason of this discrepancy is due to the fact that the microstructure of real nanocomposite magnets with their random feature is deviated from the modeled microstructure required for implementing the exchange coupling interaction between hard and soft magnetic grains. The hard magnetic shell/soft magnetic core nanostructure and the magnetic field assisted melt-spinning technique seem to be prospective for future high-performance nanocomposite magnets.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Wook Kim ◽  
Seong-Hoon Kang ◽  
Se-Jong Kim ◽  
Seungchul Lee

AbstractAdvanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimating the phase volume fraction of these steels. Despite its advantages, one of its major drawbacks is its requirement of a sufficient amount of training data with correct labels to the network. This often comes as a challenge in many areas where obtaining data and labeling it is extremely labor-intensive. To overcome this challenge, an unsupervised way of learning DNN, which does not require any manual labeling, is proposed. Information maximizing generative adversarial network (InfoGAN) is used to learn the underlying probability distribution of each phase and generate realistic sample points with class labels. Then, the generated data is used for training an MLP classifier, which in turn predicts the labels for the original dataset. The result shows a mean relative error of 4.53% at most, while it can be as low as 0.73%, which implies the estimated phase fraction closely matches the true phase fraction. This presents the high feasibility of using the proposed methodology for fast and precise estimation of phase volume fraction in both industry and academia.


2013 ◽  
Vol 31 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Bai YANG ◽  
Lei ZHANG ◽  
Baogen SHEN ◽  
Tongyun ZHAO ◽  
Ronghai YU

2006 ◽  
Vol 962 ◽  
Author(s):  
Xiangxin Rui ◽  
Zhiguang Sun ◽  
Yingfan Xu ◽  
David J. Sellmyer ◽  
Jeffrey E. Shield

ABSTRACTExchange-spring nanocomposite permanent magnets have received a great deal of attention for their potential for improved the energy products. Predicted results, however, has been elusive. Optimal properties rely on a uniformly fine nanostructure. Particularly, the soft magnetic phase must be below approximately 10 nm to ensure complete exchange coupling. Inert gas condensation (IGC) is an ideal processing route to produce sub-10 nm clusters method. Two distinct nanostructures have been produced. In the first, Fe clusters were embedded in an FePt matrix by alternate deposition from two sources. Fe cluster content ranged from 0 to 30 volume percent. Post-deposition multi-step heat treatments converted the FePt from the A1 to L10 structure. An energy product of approximately 21 MGOe was achieved. Properties deteriorated rapidly at cluster concentrations above 14 volume due to uncoupled soft magnetic regions (from cluster-cluster contacts) and cooperative reversal. The second nanostructure, designed to overcome those disadvantages, involved intra-cluster structuring. Here, Fe-rich Fe-Pt clusters separated by C or SiO2 were fabricated. Phase separation into Fe3Pt and FePt and ordering was induced during post-deposition multi-step heat treatments. By confining the soft and hard phases to individual clusters, full exchange coupling was accomplished and cooperative reversal between clusters was effectively eliminated. An energy product of more than 25 MGOe was achieved, and the volume fraction of the soft phase was increased to greater than 0.5 while maintaining a coercivity of 6.5 kOe. The results provide new insight into developing high energy product nanostructured permanent magnets.


1986 ◽  
Vol 80 ◽  
Author(s):  
A. M. Kadin ◽  
R. W. McCallum ◽  
G. B. Clemente ◽  
J. E. Keem

AbstractRapid solidification onto a copper quench surface (melt-spinning) has been used to fabricate a high-performance permanent magnet alloy (Ovonic Hi-Rem™) based on the Nd-Fe-B class of materials. Crucial idditions of alloying elements are combined with careful control over quench parameters to yield a random assembly of microcrystallites, with macrosconically isotropic magnetic properties including values of remanent induction that can exceed 10 kG and maximum energy products greater than 20 MGOe. These values exceed those expected from conventional randomly oriented magnets. The enhanced magnetic performance is related to results of x-ray diffraction and electron microscopy.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Jidong Ma ◽  
Houan Zhang ◽  
Liang Yang ◽  
Dil Faraz Khan ◽  
Yihang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document