scholarly journals Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
G. E. Saraceno ◽  
R. Castilla ◽  
G. E. Barreto ◽  
J. Gonzalez ◽  
R. A. Kölliker-Frers ◽  
...  

Perinatal asphyxia (PA) affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS). In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD) in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease inβ-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.

Author(s):  
Kristen M. Harris

Dendritic spines are the tiny protrusions that stud the surface of many neurons and they are the location of over 90% of all excitatory synapses that occur in the central nervous system. Their small size and variable shapes has in large part made detailed study of their structure refractory to conventional light microscopy and single section electron microscopy (EM). Yet their widespread occurrence and likely involvement in learning and memory has motivated extensive efforts to obtain quantitative descriptions of spines in both steady state and dynamic conditions. Since the seminal mathematical analyses of D’Arcy Thompson, the power of establishing quantitatively key parameters of structure has become recognized as a foundation of successful biological inquiry. For dendritic spines highly precise determinations of structure and its variation are proving themselves as the kingpin for establishing a valid concept of function. The recent conjunction of high quality information about the structure, function, and theoretical implications of dendritic spines has produced a flurry of new considerations of their role in synaptic transmission.


2014 ◽  
Vol 20 (30) ◽  
pp. 97-100
Author(s):  
Хетагурова ◽  
Yuliana Khetagurova ◽  
Ревазова ◽  
Asya Revazova ◽  
Бораева ◽  
...  

Despite of significant progress in the development of technologies of clinical monitoring and the fetus and newborn pathology study, perinatal asphyxia or, more accurately – cerebral ischemia (CI) remain serious condition, causing significant mortality and long-term morbidity. Chi-acquired syndrome characterized by clinical and laboratory signs of acute brain injury due to asphyxia (ie, hypoxia, acidosis). The paper reflects the main clinical signs and neurosonographic lesion of the Central nervous system (CNS) in neonatal newborn infants with different gestational age who underwent CI mild to moderate severity.


2011 ◽  
Vol 152 (15) ◽  
pp. 575-580 ◽  
Author(s):  
Vince Pongor ◽  
Gergely Toldi ◽  
Miklós Szabó ◽  
Barna Vásárhelyi

Several neurobiological mechanisms contribute to the development of ischemic-reperfusion damage of the central nervous system that may be modulated by hypothermia. Nowadays hypothermia is a therapeutic tool for the treatment of stroke and perinatal asphyxia. Hypothermia does not only affect the central nervous system, but also has systemic effects. It influences the muscular and cardiovascular system, the systematic metabolism, induces electrolyte changes, and decreases inflammation. This review summarizes the effects of therapeutic hypothermia on the immune system. Experiments on cell lines and in animals along with human experience indicate that short term (2-4 hours) hypothermia increases the levels of anti-inflammatory cytokines and decreases that of proinflammatory cytokines. Long term (>24 hours) hypothermia, however, increases proinflammatory cytokine levels. Furthermore, hypothermia inhibits lymphocyte proliferation and decreases HLA-DR expression associated with cell activation. These results suggest that therapeutic hypothermia has a systemic immunomodulatory effect. Further research is required to determine the contribution of immunomodulation to the defense of the central nervous system. Orv. Hetil., 2011, 152, 575–580.


2018 ◽  
Vol 29 (10) ◽  
pp. 4194-4207
Author(s):  
Jie Wang ◽  
Xiao-Lin Kou ◽  
Cheng Chen ◽  
Mei Wang ◽  
Cui Qi ◽  
...  

Abstract WD repeat protein 1 (Wdr1), known as a cofactor of actin-depolymerizing factor (ADF)/cofilin, is conserved among eukaryotes, and it plays a critical role in the dynamic reorganization of the actin cytoskeleton. However, the function of Wdr1 in the central nervous system remains elusive. Using Wdr1 conditional knockout mice, we demonstrated that Wdr1 plays a significant role in regulating synaptic plasticity and memory. The knockout mice exhibited altered reversal spatial learning and fear responses. Moreover, the Wdr1 CKO mice showed significant abnormalities in spine morphology and synaptic function, including enhanced hippocampal long-term potentiation and impaired long-term depression. Furthermore, we observed that Wdr1 deficiency perturbed actin rearrangement through regulation of the ADF/cofilin activity. Taken together, these results indicate that Wdr1 in the hippocampal CA1 area plays a critical role in actin dynamics in associative learning and postsynaptic receptor availability.


2014 ◽  
Vol 3 ◽  
pp. 183-195
Author(s):  
Elena Macevičiūtė

The article deals with the requirements and needs for long-term digital preservation in different areas of scholarly work. The concept of long-term digital preservation is introduced by comparing it to digitization and archiving concepts and defined with the emphasis on dynamic activity within a certain time line. The structure of digital preservation is presented with regard to the elements of the activity as understood in Activity Theory. The life-cycle of digitization processes forms the basis of the main processing of preserved data in preservation archival system.The author draws on the differences between humanities and social sciences on one hand and natural and technological science on the other. The empirical data characterizing the needs for digital preservation within different areas of scholarship are presented and show the difference in approaches to long-term digital preservation, as well as differences in selecting the items and implementing the projects of digital preservation. Institutions and organizations can also develop different understanding of preservation requirements for digital documents and other objects.The final part of the paper is devoted to some general problems pertaining to the longterm digital preservation with the emphasis of the responsibility for the whole process of safe-guarding the cultural and scholarly heritage for the re-use of the posterior generations. It is suggested that the longevity of the libraries in comparison with much shorter life-span of private companies strengthens the claim of memory institutions to playing the central role in the long-term digital preservation.


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Hochedlinger ◽  
W. Sprung ◽  
H. Kainz ◽  
K. König

The simulation of combined sewer overflow volumes and loads is important for the assessment of the overflow and overflow load to the receiving water to predict the hydraulic or the pollution impact. Hydrodynamic models are very data-intensive and time-consuming for long-term quality modelling. Hence, for long-term modelling, hydrological models are used to predict the storm flow in a fast way. However, in most cases, a constant rain intensity is used as load for the simulation, but in practice even for small catchments rain occurs in rain cells, which are not constant over the whole catchment area. This paper presents the results of quality modelling considering moving storms depending on the rain cell velocity and its moving direction. Additionally, tipping bucket gauge failures and different corrections are also taken into account. The results evidence the importance of these considerations for precipitation due the effects on overflow load and show the difference up to 28% of corrected and uncorrected data and of moving rain cells instead of constant raining intensities.


2020 ◽  
Vol 27 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Muhammad Sarwar Khan ◽  
Faiz Ahmad Joyia ◽  
Ghulam Mustafa

: The cost-effective production of high-quality and biologically active recombinant molecules especially proteins is extremely desirable. Seed-based recombinant protein production platforms are considered as superior choice owing to lack of human/animal pathogenic organisms, lack of cold chain requirements for transportation and long-term storage, easy scalability and development of edible biopharmaceuticals in plants with objective to be used in purified or partially processed form is desirable. This review article summarizes the exceptional features of seed-based biopharming and highlights the needs of exploiting it for commercial purposes. Plant seeds offer a perfect production platform for high-value molecules of industrial as well as therapeutic nature owing to lower water contents, high protein storage capacity, weak protease activity and long-term storage ability at ambient temperature. Exploiting extraordinarily high protein accumulation potential, vaccine antigens, antibodies and other therapeutic proteins can be stored without effecting their stability and functionality up to years in seeds. Moreover, ability of direct oral consumption and post-harvest stabilizing effect of seeds offer unique feature of oral delivery of pharmaceutical proteins and vaccine antigens for immunization and disease treatment through mucosal as well as oral route.


2020 ◽  
Vol 16 (8) ◽  
pp. 1022-1043
Author(s):  
Imran Khan ◽  
Sadaf Mahfooz ◽  
Mustafa A. Hatiboglu

Background: Glioblastoma is one of the most aggressive and devastating tumours of the central nervous system with short survival time. Glioblastoma usually shows fast cell proliferation and invasion of normal brain tissue causing poor prognosis. The present standard of care in patients with glioblastoma includes surgery followed by radiotherapy and temozolomide (TMZ) based chemotherapy. Unfortunately, these approaches are not sufficient to lead a favorable prognosis and survival rates. As the current approaches do not provide a long-term benefit in those patients, new alternative treatments including natural compounds, have drawn attention. Due to their natural origin, they are associated with minimum cellular toxicity towards normal cells and it has become one of the most attractive approaches to treat tumours by natural compounds or phytochemicals. Objective: In the present review, the role of natural compounds or phytochemicals in the treatment of glioblastoma describing their efficacy on various aspects of glioblastoma pathophysiology such as cell proliferation, apoptosis, cell cycle regulation, cellular signaling pathways, chemoresistance and their role in combinatorial therapeutic approaches was described. Methods: Peer-reviewed literature was extracted using Pubmed, EMBASE Ovid and Google Scholar to be reviewed in the present article. Conclusion: Preclinical data available in the literature suggest that phytochemicals hold immense potential to be translated into treatment modalities. However, further clinical studies with conclusive results are required to implement phytochemicals in treatment modalities.


Sign in / Sign up

Export Citation Format

Share Document