scholarly journals Growth Responses and Nitrogen Uptake by Saltgrass (Distichlis spicataL.), a Halophytic Plant Species, under Salt Stress, Using the15N Technique

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Pessarakli ◽  
M. A. Harivandi ◽  
David M. Kopec ◽  
Dennis T. Ray

Various saltgrass clones were studied hydroponically, using Hoagland solution, in a greenhouse to evaluate their DM weights and nitrogen uptake under control and salt stress conditions. Treatments included control (no added salt) and plants grown under NaCl salinity. Twelve clones were grown with 4 replications of each treatment in a RCB design trial. Ammonium sulfate, 5.3%15N was used to enrich the plants by adding 5 mg15N as 22.931 mg (15NH4)2SO4, per liter of the culture solution per day. Plant shoots were harvested weekly, oven-dried at 65°C, and DM weights were recorded. At the last harvest, plant roots were also harvested, oven-dried at 65°C, and DM weights were determined. Harvested plant materials were analyzed for total-N and15N contents. The results showed non-significant differences in shoot DM weights and total-N and15N concentrations and contents in salinized plants compared with the controls. Total-N and15N concentrations of the roots were higher than that of the shoots under either control or saline condition. Overall, due to the high degree of salt tolerance of saltgrass, the results showed generally no difference in nitrogen uptake by most of the clones under salt stress compared with the control plants.

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


2020 ◽  
Vol 53 (1) ◽  
pp. 19-27
Author(s):  
Adenike Fisayo Komolafe ◽  
Christopher Olu Adejuyigbe ◽  
Adeniyi Adebowale Soretire ◽  
Isaac OreOluwa Olatokunbo Aiyelaagbe

AbstractCompost maturity is a major factor in its use for nutrient supply without adverse effect on crop germination. Composting may be accelerated with inclusion of some microorganisms as activators. This study was conducted to determine the effect of Trichoderma asperellum and length of composting of different plant materials and cattle manure on compost maturity in Ibadan, Nigeria. Composting of two plant materials with cow dung at ratio 3:1 was done in triplicate with or without Trichoderma activation to obtain twelve heaps of four different types of composts; Panicum-based compost with Trichoderma, Tridax-based compost with Trichoderma, Panicum-based compost without Trichoderma and Tridax-based compost without Trichoderma. The process was a 2×2 factorial experiment, laid out a completely randomized design. The Trichoderma activated compost (TAC) at four weeks of composting (4WC) had 56% total N, 21% organic matter, 38% total K, 51% total P and 66.6% microbial biomass N increase over non-activated compost (NAC). Carbon to nitrogen ratio was within the ideal range (10–20) in TAC while it was greater than it in NAC. Microbial biomass and lignin contents had a 56% and 41% increase, respectively, in NAC over TAC. Trichorderma-activated compost has a potential to hasten maturation and makes the compost ready for field on or before four weeks without posing a threat to crop germination.


1993 ◽  
Vol 121 (2) ◽  
pp. 255-263 ◽  
Author(s):  
J. H. Niezen ◽  
T. N. Barry ◽  
J. Hodgson ◽  
P. R. Wilson ◽  
A. M. Ataja ◽  
...  

SUMMARYTwo experiments were conducted at the Massey University Deer Unit, New Zealand in 1990 and 1991 to evaluate the performance of lactating red deer hinds and their calves grazing conventional perennial ryegrass-based pastures, red clover or chicory. In both experiments, hind and calf performance was evaluated from 1 month post-parturition over a 2½ month summer period to weaning at 3½ months of age.In Expt 1, hinds and calves were grazed on low (5·4 kg dry matter (DM)/hd/day), medium (10·8) or high (16·4) allowances of red clover, or on a medium allowance of a conventional ryegrass/white clover sward (9·9 DM/hd/day). In Expt 2, hinds and calves grazed equal DM allowances (12 kg DM/hd/day) of perennial ryegrass/white clover, chicory or red clover.Red clover generally had higher organic matter digestibility (OMD) and higher total N than ryegrass/white clover, and when grazed at equal DM allowances, promoted higher voluntary food intake in the hinds, increased calf growth (430 v. 330 g/day) and increased hind liveweight change. Although decreasing the red clover allowance in Expt 1 slightly but non-significantly decreased hind voluntary food intake and decreased both calf and hind liveweight change, all low red clover values were still consistently higher than all ryegrass/white clover values (P < 0·05). In Expt 2, chicory was of higher OMD and ash content than red clover but N content was lower and similar to ryegrass/white clover. Chicory promoted lower levels of calf liveweight change than red clover but higher than ryegrass/white clover. Hind liveweight change on chicory was lower than on red clover and was similar to ryegrass/white clover. It was concluded that red clover offers potential as a special purpose forage for deer production and that further experimental work is needed with chicory.


2014 ◽  
Vol 22 (2) ◽  
pp. 161-178 ◽  
Author(s):  
D.G. Maynard ◽  
D. Paré ◽  
E. Thiffault ◽  
B. Lafleur ◽  
K.E. Hogg ◽  
...  

There are concerns about the effect of increasing resource extraction and other human activities on the soils and vegetation of the boreal zone. The review covers published papers between 1974 and 2012 to assess the effects of natural disturbances and human activities on soils and tree nutrition and growth of the Canadian boreal zone. Changes in soil and foliar nutrients following disturbance were also analyzed by meta-analysis. When sufficient replicated studies were not available for a given disturbance or nutrient, response assessments or narrative summaries are presented. The majority of fertilization studies in the boreal zone showed a positive tree growth response to nitrogen (N) and phosphorus (P) fertilization either individually or in combination. Large amounts of N may be lost through volatilization following fire depending on the severity and frequency of the fire. This may contribute to N limitation in the boreal zone. Available soil P and extractable calcium (Ca) and magnesium (Mg) increased in the surface horizons following fire. In contrast, extractable P decreased following harvest. Harvesting had no effect on total or inorganic N except in mixedwoods where total N decreased in the surface organic horizon following harvest. These are potential areas of concern given tree growth responses to N and P fertilization. Potassium (K) in the forest floor did not change following fire or harvesting; thus, K availability for tree nutrition should not be at risk, since its cycle is rapidly restored. Mercury (Hg) cycling may be altered in the boreal zone as a result of flooding and if fire return intervals and intensities increase. Interactions of multiple disturbances may increase the risk of nutrient depletions, but there is currently little information on these interactions in the boreal zone. Evidence to date suggests the soils of the Canadian boreal zone have not been adversely affected except in localized areas. However, there is the risk of nutrient loss if soils are not considered in our forest management strategies, particularly where multiple disturbances may interact. The potential for off-site movement of nutrients and contaminants into the atmospheric and aquatic ecosystems, in addition to on-site environmental issues, is also a concern.


1978 ◽  
Vol 18 (94) ◽  
pp. 732 ◽  
Author(s):  
C Johansen

The response to Mo application of Panicum maximum var. trichoglume cv. Gatton (panic), Cenchrus ciliaris cv. Biloela (buffel) and Setaria sphacelata cv. Nandi (setaria) was studied at three rates of NO3 supply in pots containing soil that was severely Mo deficient for tropical legumes. There were no growth responses of these grasses to Mo, except for a marginally significant effect in panic at the highest NO3 treatment at the first harvest. These results are compared with Mo responses of legume/grass mixtures in the field and published data showing large growth responses of some temperate grasses to Mo. Application of Mo had no effect on total N concentrations of grass tops but markedly decreased NO3-N concentrations in buffel. Setaria had a greater ability to take up Mo than the other grasses and this was associated with the lower NO3 levels in this species. Critical Mo concentrations for growth of all grasses were below 0.02 p.p.m.


1980 ◽  
Vol 63 (4) ◽  
pp. 770-778 ◽  
Author(s):  
Darrell W Nelson ◽  
Lee E Sommers

Abstract Progress of the Dumas and Kjeldahl procedures over the past century is reviewed. Many recent papers claim that various modifications of the standard Kjeldahl method enhance accuracy, precision, or speed, and reduce cost of analysis. Furthermore, several authors advocate use of Pyrex tubes heated in an aluminum block for digestion instead of traditional Kjeldahl flasks. A review of current semimicro-Kjeldahl methodology suggests that proceeding under the following conditions gives satisfactory results: sample size, 50–200 mg for plant material, 100–500 mg for soil; digestion acid, concentrated H2SO4; sample size ratio (mL/g) of 16:1 for soils and 22:1 for plant materials; digestion salt, minimum 0.33 g K2SO4 added/mL H2SO4; catalysts, add CuSO4 5H2O at rate of 10% (w/w) of K2SO4 added, HgO at 5% (w/w) of K2SO4, or add Se to K2SO4–CuSO4 5H2O mixtures at rate of 1% (w/w) K2SO4; digestion time, 1 and 3 h past clearing for plant materials and soils, respectively; pretreatments, use salicylic acid or reduced iron to recover nitrate from sample. Use of Pyrex tubes heated in an aluminum block appears suitable for digestions. Our results indicate that the 2 commercial tube digestion systems tested produce satisfactory recovery of total N from soils and plant materials. Ammonium in Kjeldahl digests may be quantitatively determined by distillationtitration, ammonia electrode, or colorimetric techniques.


2020 ◽  
Vol 66 (No. 7) ◽  
pp. 334-344
Author(s):  
Zahra Jabeen ◽  
Nazim Hussain ◽  
Faiza Irshad ◽  
Jianbin Zeng ◽  
Ayesha Tahir ◽  
...  

Saline soil is a critical environmental problem affecting crop yield worldwide. Tibetan wild barley is distinguished for its vast genetic diversity and high degree of tolerance to abiotic stress, including salinity. The present study compared the response of antioxidant defense system in the XZ16 wild and CM72 cultivated barleys to salt stress. Wild barley was relatively more tolerant than cultivated CM72, salt-tolerant cultivar, with less Na<sup>+</sup> uptake and more K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> retention in plant tissues. The results of diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed that XZ16 had significantly lower H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>−</sup> concentrations than a salt-sensitive cultivar Gairdner, suggesting that the salt-tolerant genotype suffer from less oxidative damage. Moreover, XZ16 and Gairdner had the highest and lowest anti-oxidative enzyme activities and proline content in plant tissues. In addition, the microscopic examination revealed that DNA damage in cv. Gairdner was closely correlated to oxidative stress, representing that more reactive oxygen species accumulation in plants tissues leads to subsequent DNA damage. The present results show that higher salt tolerance of wild barley XZ16 is attributed to less Na<sup>+</sup> accumulation and stronger anti-oxidative capacity.  


1984 ◽  
Vol 14 (2) ◽  
pp. 155-162 ◽  
Author(s):  
M. A. Radwan ◽  
D. S. DeBell ◽  
S. R. Webster ◽  
S. P. Gessel

Effects of different sources of fertilizer N on selected chemical characteristics of soils and foliage, and on growth of western hemlock (Tsugaheterophylla (Raf.) Sarg.) were compared at three different sites in western Washington. Treatments were the following: untreated control (O), ammonium nitrate (AN), ammonium sulfate (AS), calcium nitrate (CN), urea (U), and urea – ammonium sulfate (US). Fertilizers were applied in the spring (April–May) at 224 kg N/ha. Forest floor and mineral soil, to a depth of 5 cm, and foliage were sampled periodically for 2 years. Height and diameter of selected trees were measured periodically for 4 years. Results are reported mostly for two sites, one in the Cascade Range and one in the coastal zone in western Washington. The pH of forest floor and mineral soil varied by treatment, and the two urea fertilizers caused substantial initial rise. Effects on soil and foliar nutrients varied by fertilizer, sampling date, and location. In general, all fertilizers increased NH4 N, N03 N, and total N in the forest floor and mineral soil, and total N in the foliage. Also, with some exceptions, especially with foliar P in the Cascade site, fertilization reduced foliar content of important nutrients. At the Cascade site, 4-year growth responses in height, basal area, and volume averaged over all fertilizers were 30, 34, and 32%, respectively. AN, AS, CN, and urea resulted in height growth significantly (P < 0.20) higher than that of the control. Significant basal area growth and volume-growth responses were produced by AN, CN, and US. No significant height-growth response to any fertilizer occurred in the coastal stand; basal area growth and volume-growth responses averaged 27 and 21%, respectively, and best response occurred with urea. These results suggest that the low and inconsistent response of hemlock to N fertilization cannot be improved by applying some N fertilizer other than urea. Factors limiting response to N fertilization may be associated with availability of native N and other nutrients or other characteristics of hemlock sites and stands.


Sign in / Sign up

Export Citation Format

Share Document