scholarly journals Periostin as a Biomarker of the Amniotic Membrane

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Mariya P. Dobreva ◽  
Larissa Lhoest ◽  
Paulo N. G. Pereira ◽  
Lieve Umans ◽  
Susana M. Chuva de Sousa Lopes ◽  
...  

Tracing the precise developmental origin of amnion and amnion-derived stem cells is still challenging and depends chiefly on analyzing powerful genetic model amniotes like mouse. Profound understanding of the fundamental differences in amnion development in both the disc-shaped primate and human embryo and the cup-shaped mouse embryo is pivotal in particular when sampling amniotic membrane from nonprimate species for isolating candidate amniotic stem cells. The availability of molecular marker genes that are specifically expressed in the amniotic membrane and not in other extraembryonic membranes would be instrumental to validate unequivocally the starting material under investigation. So far such amniotic markers have not been reported. We postulated that bone morphogenetic protein (BMP) target genes are putative amniotic membrane markers mainly because deficiency in one of several components of the BMP signaling cascade in mice has been documented to result in defective development of the early amnion. Comparative gene expression analysis of acknowledged target genes for BMP in different extraembryonic tissues, combined within situhybridization, identifiedPeriostin (Postn)mRNA enrichment in amnion throughout gestation. In addition, we identify and propose a combination of markers as transcriptional signature for the different extraembryonic tissues in mouse.

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Georg Kuales ◽  
Matthias Weiss ◽  
Oliver Sedelmeier ◽  
Dietmar Pfeifer ◽  
Sebastian J. Arnold

Trophoblast stem cells (TSCs) represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factorsCdx2,Eomes, andElf5in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles ofEomesorCdx2, andEomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR andin situhybridisation validated novel TSC- and chorion-specific marker genes, such asBok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, andSox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.


Author(s):  
Su-Jin Heo ◽  
Tristan P. Driscoll ◽  
Robert L. Mauck

Mesenchymal stem cells (MSCs) are a promising cell source for tissue engineering applications, given their ease of isolation and multi-potential differentiation capacity [1]. External mechanical cues directly influence MSC lineage commitment [2]. However, it is not yet clear how these physical cues are transduced to the cell nucleus, an understanding of which may prove essential for orthopaedic tissue engineering. Transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP), members of the TGF beta superfamily, regulate cellular processes including growth and differentiation [3, 4]. TGF and/or BMP ligand binding initiate SMAD phosphorylation, translocation to the nucleus, and transcriptional activation of target genes [4]. Additionally, both ligands can influence the organization of chromatin and the Lamin A/C (LMAC) nucleoskeletal network [5]. For example, we have recently shown that TGF-β3 leads to corticalized LMAC, marked increases in heterochromatin (HTC), and increased nuclear stiffness [6]. Interestingly, dynamic tensile stretch of MSCs on aligned nanofibrous scaffolds, in the absence of these differentiation factors, resulted in many of these same nuclear transformations [6, 7]. The objective of this study was to identify how dynamic tensile stress is transduced in MSCs on aligned nanofibrous scaffolds, and further, to ascertain whether these mechanoregulatory changes are coordinated through TGFβ/BMP signaling pathways.


Stem Cells ◽  
2015 ◽  
Vol 33 (11) ◽  
pp. 3341-3355 ◽  
Author(s):  
Szu-Yu Chen ◽  
Bo Han ◽  
Ying-Ting Zhu ◽  
Megha Mahabole ◽  
Jie Huang ◽  
...  

2019 ◽  
Vol 12 (6) ◽  
pp. 599-613 ◽  
Author(s):  
Siti Nurnasihah Md Hashim ◽  
Muhammad Fuad Hilmi Yusof ◽  
Wafa’ Zahari ◽  
Hamshawagini Chandra ◽  
Khairul Bariah Ahmad Amin Noordin ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1570
Author(s):  
Chien-Hsun Huang ◽  
Chih-Chieh Chen ◽  
Yu-Chun Lin ◽  
Chia-Hsuan Chen ◽  
Ai-Yun Lee ◽  
...  

The current taxonomy of the Lactiplantibacillus plantarum group comprises of 17 closely related species that are indistinguishable from each other by using commonly used 16S rRNA gene sequencing. In this study, a whole-genome-based analysis was carried out for exploring the highly distinguished target genes whose interspecific sequence identity is significantly less than those of 16S rRNA or conventional housekeeping genes. In silico analyses of 774 core genes by the cano-wgMLST_BacCompare analytics platform indicated that csbB, morA, murI, mutL, ntpJ, rutB, trmK, ydaF, and yhhX genes were the most promising candidates. Subsequently, the mutL gene was selected, and the discrimination power was further evaluated using Sanger sequencing. Among the type strains, mutL exhibited a clearly superior sequence identity (61.6–85.6%; average: 66.6%) to the 16S rRNA gene (96.7–100%; average: 98.4%) and the conventional phylogenetic marker genes (e.g., dnaJ, dnaK, pheS, recA, and rpoA), respectively, which could be used to separat tested strains into various species clusters. Consequently, species-specific primers were developed for fast and accurate identification of L. pentosus, L. argentoratensis, L. plantarum, and L. paraplantarum. During this study, one strain (BCRC 06B0048, L. pentosus) exhibited not only relatively low mutL sequence identities (97.0%) but also a low digital DNA–DNA hybridization value (78.1%) with the type strain DSM 20314T, signifying that it exhibits potential for reclassification as a novel subspecies. Our data demonstrate that mutL can be a genome-wide target for identifying and classifying the L. plantarum group species and for differentiating novel taxa from known species.


2021 ◽  
Vol 22 (8) ◽  
pp. 3913
Author(s):  
Satoshi Nakata ◽  
Ming Yuan ◽  
Jeffrey A. Rubens ◽  
Ulf D. Kahlert ◽  
Jarek Maciaczyk ◽  
...  

Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


Author(s):  
Kamil Wartalski ◽  
Gabriela Gorczyca ◽  
Jerzy Wiater ◽  
Zbigniew Tabarowski ◽  
Małgorzata Duda

AbstractEndothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2340
Author(s):  
Angelina T. Regua ◽  
Noah R. Aguayo ◽  
Sara Abu Jalboush ◽  
Daniel L. Doheny ◽  
Sara G. Manore ◽  
...  

JAK2–STAT3 and TrkA signaling pathways have been separately implicated in aggressive breast cancers; however, whether they are co-activated or undergo functional interaction has not been thoroughly investigated. Herein we report, for the first time that STAT3 and TrkA are significantly co-overexpressed and co-activated in triple-negative breast cancer (TNBC) and HER2-enriched breast cancer, as shown by immunohistochemical staining and data mining. Through immunofluorescence staining–confocal microscopy and immunoprecipitation–Western blotting, we found that TrkA and STAT3 co-localize and physically interact in the cytoplasm, and the interaction is dependent on STAT3-Y705 phosphorylation. TrkA–STAT3 interaction leads to STAT3 phosphorylation at Y705 by TrkA in breast cancer cells and cell-free kinase assays, indicating that STAT3 is a novel substrate of TrkA. β-NGF-mediated TrkA activation induces TrkA–STAT3 interaction, STAT3 nuclear transport and transcriptional activity, and the expression of STAT3 target genes, SOX2 and MYC. The co-activation of both pathways promotes breast cancer stem cells. Finally, we found that TNBC and HER2-enriched breast cancer with JAK2–STAT3 and TrkA co-activation are positively associated with poor overall metastasis-free and organ-specific metastasis-free survival. Collectively, our study uncovered that TrkA is a novel activating kinase of STAT3, and their co-activation enhances gene transcription and promotes breast cancer stem cells in TNBC and HER2-enriched breast cancer.


Sign in / Sign up

Export Citation Format

Share Document