scholarly journals Valproic Acid Downregulates the Expression of MGMT and Sensitizes Temozolomide-Resistant Glioma Cells

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chung Heon Ryu ◽  
Wan Soo Yoon ◽  
Kwang Ywel Park ◽  
Seong Muk Kim ◽  
Jung Yeon Lim ◽  
...  

Temozolomide (TMZ) has become a key therapeutic agent in patients with malignant gliomas; however, its survival benefit remains unsatisfactory. Valproic acid (VPA) has emerged as an anticancer drug via inhibition of histone deacetylases (HDACs), but the therapeutic advantages of a combination with VPA and TMZ remain poorly understood. The main aim of the present study was to determine whether an antitumor effect could be potentiated by a combination of VPA and TMZ, especially in TMZ-resistant cell lines. A combination of VPA and TMZ had a significantly enhanced antitumor effect in TMZ-resistant malignant glioma cells (T98 and U138). This enhanced antitumor effect correlated with VPA-mediated reduced O6-methylguanine-DNA methyltransferase (MGMT) expression, which plays an important role in cellular resistance to alkylating agents.In vitro, the combination of these drugs enhanced the apoptotic and autophagic cell death, as well as suppressed the migratory activities in TMZ-resistant cell lines. Furthermore,in vivoefficacy experiment showed that treatment of combination of VPA and TMZ significantly inhibited tumor growth compared with the monotherapy groups of mice. These results suggest that the clinical efficacy of TMZ chemotherapy in TMZ-resistant malignant glioma may be improved by combination with VPA.

2018 ◽  
Vol 51 (6) ◽  
pp. 2496-2508 ◽  
Author(s):  
Danfeng Zhang ◽  
Dawei Dai ◽  
Mengxia Zhou ◽  
Zhenxing Li ◽  
Chunhui Wang ◽  
...  

Background/Aims: Cyclin D1 (CCND1) is frequently overexpressed in malignant gliomas. We have previously shown ectopic overexpression of CCND1 in human malignant gliomas cell lines. Methods: Quantitative reverse transcriptase PCR (qRT-PCR) and Western Blot (WB) was performed to investigate the expression of CCND1 in glioma tissues and cell lines. The biological function of CCND1 was also investigated through knockdown and overexpression of BCYRN1 in vitro. Results: Here we reported that CCND1 expression was positively associated with the pathological grade and proliferative activity of astrocytomas, as the lowest expression was found in normal brain tissue (N = 3) whereas the highest expression was in high-grade glioma tissue (N = 25). Additionally, we found that the expression level of CCND1 was associated with IC50 values in malignant glioma cell lines. Forced inhibition of CCND1 increased temozolomide efficacy in U251 and SHG-44 cells. After CCND1 overexpression, the temozolomide efficacy decreased in U251 and SHG-44 cells. Colony survival assay and apoptosis analysis confirmed that CCND1 inhibition renders cells more sensitive to temozolomide treatment and temozolomide-induced apoptosis in U251 and SHG-44 cells. Inhibition of P-gp (MDR1) by Tariquidar overcomes the effects of CCND1 overexpression on inhibiting temozolomide-induced apoptosis. Inhibition of CCND1 inhibited cell growth in vitro and in vivo significantly more effectively after temozolomide treatments than single temozolomide treatments. Finally, inhibition of CCND1 in glioma cells reduced tumor volume in a murine model. Conclusion: Taken together, these data indicate that CCND1 overexpression upregulate P-gp and induces chemoresistance in human malignant gliomas cells and that inhibition of CCND1 may be an effective means of overcoming CCND1 associated chemoresistance in human malignant glioma cells.


2020 ◽  
pp. 1-10 ◽  
Author(s):  
Tetsuya Yamada ◽  
Shohei Tsuji ◽  
Shinsuke Nakamura ◽  
Yusuke Egashira ◽  
Masamitsu Shimazawa ◽  
...  

OBJECTIVEGlutamatergic signaling significantly promotes proliferation, migration, and invasion in glioblastoma (GBM). Riluzole, a metabotropic glutamate receptor 1 inhibitor, reportedly suppresses GBM growth. However, the effects of combining riluzole with the primary GBM chemotherapeutic agent, temozolomide (TMZ), are unknown. This study aimed to investigate the efficacy of combinatorial therapy with TMZ/riluzole for GBM in vitro and in vivo.METHODSThree GBM cell lines, T98G (human; O6-methylguanine DNA methyltransferase [MGMT] positive), U87MG (human; MGMT negative), and GL261 (murine; MGMT positive), were treated with TMZ, riluzole, or a combination of both. The authors performed cell viability assays, followed by isobologram analysis, to evaluate the effects of combinatorial treatment for each GBM cell line. They tested the effect of riluzole on MGMT, a DNA repair enzyme causing chemoresistance to TMZ, through quantitative real-time reverse transcription polymerase chain reaction in T98G cells. Furthermore, they evaluated the efficacy of combinatorial TMZ/riluzole treatment in an orthotopic mouse allograft model of MGMT-positive GBM using C57BL/6 J mice and GL261 cells.RESULTSRiluzole displayed significant time- and dose-dependent growth-inhibitory effects on all GBM cell lines assessed independently. Riluzole enhanced the antitumor effect of TMZ synergistically in MGMT-positive but not in MGMT-negative GBM cell lines. Riluzole singularly suppressed MGMT expression, and it significantly suppressed TMZ-induced MGMT upregulation (p < 0.01). Furthermore, combinatorial TMZ/riluzole treatment significantly suppressed tumor growth in the intracranial MGMT-positive GBM model (p < 0.05).CONCLUSIONSRiluzole attenuates TMZ-induced MGMT upregulation and enhances the antitumor effect of TMZ in MGMT-positive GBMs. Therefore, combinatorial TMZ/riluzole treatment is a potentially promising novel therapeutic regimen for MGMT-positive GBMs.


2013 ◽  
Vol 119 (6) ◽  
pp. 1415-1423 ◽  
Author(s):  
Daniela A. Bota ◽  
Daniela Alexandru ◽  
Stephen T. Keir ◽  
Darell Bigner ◽  
James Vredenburgh ◽  
...  

Object Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Methods Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Results Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib activity was directly proportional with the cells' baseline proteasome activity. The proteasome inhibition stimulated both hypoxia-inducible factor (HIF)–1α and vascular endothelial growth factor (VEGF) production in malignant GSCs. As such, the VEGF produced by GSCs stimulated endothelial cell growth, an effect that could be prevented by the addition of bevacizumab (VEGF antibody) to the media. Similarly, administration of bortezomib and bevacizumab to athymic mice carrying subcutaneous malignant glioma xenografts resulted in greater tumor inhibition and greater improvement in survival than administration of either drug alone. These data indicate that simultaneous proteasome inhibition and VEGF blockade offer increased benefit as a strategy for malignant glioma therapy. Conclusions The results of this study indicate that combination therapies based on bortezomib and bevacizumab might offer an increased benefit when the two agents are used in combination. These drugs have a complementary mechanism of action and therefore can be used together to treat TMZ-resistant malignant gliomas.


2001 ◽  
Vol 37 ◽  
pp. S66 ◽  
Author(s):  
J. Remenyi ◽  
T. Hegedus ◽  
B. Sarkadi ◽  
S. Toth ◽  
A. Falus ◽  
...  

2007 ◽  
Vol 107 (3) ◽  
pp. 617-627 ◽  
Author(s):  
Ilya V. Ulasov ◽  
Angel A. Rivera ◽  
Yu Han ◽  
David T. Curiel ◽  
Zeng B. Zhu ◽  
...  

Object Gene therapy protocols for malignant gliomas utilize adenoviral vectors that rely almost exclusively on the adenovirus serotype 5 (Ad5) backbone. The authors have previously shown that chimeric vectors that bind to the Ad3 receptor, or CD46, increase the transduction efficiency of malignant brain tumors. In light of the debate regarding the efficacy of CD46 compared with CD80/CD86 in binding Ad3 virions, the authors now examine the expression and transduction efficiency of Ad5/3 chimeras that bind via CD80/CD86. Methods The authors first analyzed CD80/CD86 expression in glioma cell lines. They then used three replication-defective vectors containing a luciferase reporter gene: Ad5/3 (containing the tail and shaft domain of Ad5 and the knob domain of Ad3); Ad3/5 (containing the tail of Ad5, shaft of Ad3, and knob of Ad5); and Ad3/3 (containing the tail of Ad5, shaft of Ad3, and knob of Ad3). These vectors were analyzed both in vitro and in vivo against malignant glioma cells. To examine further the effect of Ad5/3 fiber modification, the authors created an oncolytic vector, conditionally replicative Ad5/3 (CRAd5/3). Results The Ad5/3 vector showed a 10- to 100-fold enhanced transduction efficiency of malignant glioma compared with replication-defective wild-type adenovirus (reAd5) (p < 0.05). Moreover the use of Ad5/3 reduced transgene expression by more than 90% in normal human brain cells compared with reAd5. Finally, the use of CRAd5/3 inhibited tumor cell proliferation by 43% more than replication-competent wild-type virus in vitro (p < 0.05). Conclusions The results of this study demonstrate that the Ad5/3 vector offers superior transduction efficiency and low toxicity in the setting of brain tumors, and therefore represents a potential new approach to gene therapy for malignant gliomas.


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2020 ◽  
Vol 20 (15) ◽  
pp. 1857-1872
Author(s):  
Alberto M. Muñoz ◽  
Manuel J. Fragoso-Vázquez ◽  
Berenice P. Martel ◽  
Alma Chávez-Blanco ◽  
Alfonso Dueñas-González ◽  
...  

Background: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water. Objective: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation. Methods: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes. Results: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation. Discussion: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn’t show effects on the three cell lines employed. Conclusion: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.


2021 ◽  
Vol 22 (13) ◽  
pp. 6781
Author(s):  
Anna Kirstein ◽  
Daniela Schilling ◽  
Stephanie E. Combs ◽  
Thomas E. Schmid

Background: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. Methods: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. Results: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. Conclusion: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.


2021 ◽  
Vol 22 (8) ◽  
pp. 3845
Author(s):  
Sarah Teuber-Hanselmann ◽  
Karl Worm ◽  
Nicole Macha ◽  
Andreas Junker

Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


Sign in / Sign up

Export Citation Format

Share Document