scholarly journals Lifting the Silver Flakes: The Pathogenesis and Management of Chronic Plaque Psoriasis

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Heng T. Chong ◽  
Zlatko Kopecki ◽  
Allison J. Cowin

Psoriasis is a common chronic inflammatory skin condition in which patients suffer from mild to chronic plaque skin plaques. The disease manifests through an excessive inflammatory response in the skin due to complex interactions between different genetic and environmental factors. Psoriasis can affect the physical, emotional, and psychosocial well-being of patients, and currently there is no cure with treatments focusing primarily on the use of anti-inflammatory agents to control disease symptoms. Traditional anti-inflammatory agents can cause immunosuppression and adverse systemic effects. Further understanding of the disease has led to current areas of research aiming at the development of selective molecular targets to suppress the pathogenic immune responses.

2021 ◽  
pp. 1-55
Author(s):  
Siu Wa Tang ◽  
Daiga Helmeste ◽  
Brian Leonard

Abstract Neuropsychiatric sequalae to COVID-19 infection are beginning to emerge, like previous Spanish influenza and SARS episodes. Streptococcal infection in pediatric patients causing OCD (PANDAS) is another recent example of an infection-based psychiatric disorder. Inflammation associated with neuropsychiatric disorders has been previously reported but there is no standard clinical management approach established. Part of the reason is that it is unclear what factors determine the specific neuronal vulnerability and the efficacy of anti-inflammatory treatment in neuroinflammation. The emerging COVID-19 data suggested that in the acute stage, wide-spread neuronal damage appears to be the result of abnormal and overactive immune responses and cytokine storm is associated with poor prognosis. It is still too early to know if there are long term specific neuronal or brain regional damages associated with COVID-19, resulting in distinct neuropsychiatric disorders. In several major psychiatric disorders where neuroinflammation is present, patients with abnormal inflammatory markers may also experience less than favorable response or treatment resistance when standard treatment is used alone. Evidence regarding the benefits of co-administered anti-inflammatory agents such as COX-2 inhibitor is encouraging in selected patients though may not benefit others. Disease modifying therapies are increasingly being applied to neuropsychiatric diseases characterized by abnormal or hyperreactive immune responses. Adjunct anti-inflammatory treatment may benefit selected patients and is definitely an important component of clinical management in the presence of neuroinflammation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Isabel M. Guijarro ◽  
Moisés Garcés ◽  
Pol Andrés-Benito ◽  
Belén Marín ◽  
Alicia Otero ◽  
...  

The actual role of prion protein-induced glial activation and subsequent cytokine secretion during prion diseases is still incompletely understood. The overall aim of this study is to assess the effect of an anti-inflammatory treatment with dexamethasone on different cytokines released by neuroglial cells that are potentially related to neuroinflammation in natural scrapie. This study emphasizes the complex interactions existent among several pleiotropic neuromodulator peptides and provides a global approach to clarify neuroinflammatory processes in prion diseases. Additionally, an impairment of communication between microglial and astroglial populations mediated by cytokines, mainly IL-1, is suggested. The main novelty of this study is that it is the first one assessing in situ neuroinflammatory activity in relation to chronic anti-inflammatory therapy, gaining relevance because it is based on a natural model. The cytokine profile data would suggest the activation of some neurotoxicity-associated route. Consequently, targeting such a pathway might be a new approach to modify the damaging effects of neuroinflammation.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 355
Author(s):  
Guilhem Lalle ◽  
Julie Twardowski ◽  
Yenkel Grinberg-Bleyer

The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.


2014 ◽  
Vol 20 (5) ◽  
pp. 526-530 ◽  
Author(s):  
Vicki Traina-Dorge ◽  
Robert Sanford ◽  
Stephanie James ◽  
Lara A. Doyle-Meyers ◽  
Eileen de Haro ◽  
...  

2020 ◽  
Vol 6 (10) ◽  
pp. 206-233
Author(s):  
S. Bulgakova ◽  
N. Romanchuk

The availability of innovative technologies, such as next-generation sequencing and correlated bioinformatics tools, allows deeper investigation of the cross-network relationships between the microbiota and human immune responses. Immune homeostasis is the balance between immunological tolerance and inflammatory immune responses — a key feature in the outcome of health or disease. A healthy microbiota is the qualitative and quantitative ratio of diverse microbes of individual organs and systems, maintaining the biochemical, metabolic and immune equilibrium of the macroorganism necessary to preserve human health. The studies of P. I. Romanchuk found that the microbiota is a key element potentially capable of influencing antigen functions to induce a protective immune response and the ability of the immune system to adequately respond to antigenic stimulation (vaccine efficacy) by acting as an immunological modulator as well as a natural vaccine adjuvant. The mechanisms underlying the crosstalk between the gut microbiota and the immune system play a crucial role, especially at an early age (early gut microbiota forms immunological functions). New interactions, along with other genetic and environmental factors, lead to a certain composition and richness of the microbiota, which can diversify the individual response to vaccinations. Variations in microbial communities may explain the geographical effectiveness of vaccination. Modern technologies for quantifying the specific and functional characteristics of the microbiota of the gastrointestinal tract, along with fundamental and new concepts in the field of immunology, have revealed numerous ways in which the interaction of the host and microbiota proceeds favorably, neutrally or unfavorably. The gut microbiota has a strong influence on the shape and quality of the immune system, respectively, the immune system determines the composition and localization of the microbiota. Thus, a healthy microbiota directly modulates intestinal and systemic immune homeostasis. The new managed healthy biomicrobiota and personalized functional and balanced nutrition of the “brain and microbiota” is a patient's long-term medical program that allows the combined use of nutritional epigenetics and pharmacepigenetics, and most importantly, an increase in the protective mechanisms of immunity.


2021 ◽  
Author(s):  
Girish Radhakrishnan ◽  
Varadendra Mazumdar ◽  
Kiranmai Joshi ◽  
Binita Roy Nandi ◽  
Swapna Namani ◽  
...  

Brucella species are intracellular bacterial pathogens, causing the world-wide zoonotic disease, brucellosis.  Brucella invade professional and non-professional phagocytic cells, followed by resisting intracellular killing and establishing a replication permissive niche. Brucella also modulate the innate and adaptive immune responses of the host for their chronic persistence. The complex intracellular cycle of Brucella majorly depends on multiple host factors but limited information is available on host and bacterial proteins that play essential role in the invasion, intracellular replication and modulation of host immune responses. By employing an siRNA screening, we identified a role for the host protein, FBXO22 in Brucella -macrophage interaction. FBXO22 is the key element in the SCF E3 ubiquitination complex where it determines the substrate specificity for ubiquitination and degradation of various host proteins.  Downregulation of FBXO22 by siRNA or CRISPR-Cas9 system, resulted diminished uptake of Brucella into macrophages, which was dependent on NF-κB-mediated regulation of phagocytic receptors. FBXO22 expression was upregulated in Brucella -infected macrophages that resulted induction of phagocytic receptors and enhanced production of pro-inflammatory cytokines through NF-κB. Furthermore, we found that FBXO22 recruits the effector proteins of Brucella , including the anti-inflammatory proteins, TcpB and OMP25 for degradation through the SCF complex. We did not observe any role for another F-box containing protein of SCF complex, β-TrCP in Brucella -macrophage interaction. Our findings unravel novel functions of FBXO22 in host-pathogen interaction and its contribution to pathogenesis of infectious diseases.


1987 ◽  
Vol 38 (2) ◽  
pp. 373
Author(s):  
RN Allen

The basic infection rate of bunchy top disease in established bananas averaged 0.0342 new infections per infectious plant per day, but varied seasonally with a maximum in summer. The mean distance of spread for the aphid vector was 15.2 m. The latent period was 59.8 days and correlated with the time required for the growth of 3.7 new banana leaves. A microcomputer program was written to simulate spread of banana bunchy top disease in space and time. In the absence of disease control, disease spread from an initial primary infection in July or January to 124 or 153 infected plants, respectively, in one year. When disease control was maintained by removing diseased plants whenever the number of infected plants exceeded a given threshold, the numbers of diseased plants detected each inspection were positively correlated with the infection threshold, but the numbers of inspections required to maintain control increased markedly as the infection threshold was decreased. A practice of removing apparently healthy plants within 5 m of plants detected with bunchy top disease symptoms in five or more leaves was found to locate about 30% of the remaining undetected infected plants when disease was first detected in a plantation. However, its use as a routine control measure was ineffective in reducing the number of inspections required to maintain control or in reducing the risk of disease spreading to adjoining plantations. Removal of apparently healthy plants within 5 m had some bearing on disease control when applied around plants with disease symptoms in two leaves or less, but also caused a significant loss of healthy plants.


Glycobiology ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 134-142 ◽  
Author(s):  
María V Tribulatti ◽  
Julieta Carabelli ◽  
Cecilia A Prato ◽  
Oscar Campetella

Abstract Galectins (Gals), a family of mammalian lectins, have emerged as key regulators of the immune response, being implicated in several physiologic and pathologic conditions. Lately, there is increasing data regarding the participation of Galectin-8 (Gal-8) in both the adaptive and innate immune responses, as well as its high expression in inflammatory disorders. Here, we focus on the pro- and anti-inflammatory properties of Gal-8 and discuss the potential use of this lectin in order to shape the immune response, according to the context.


Sign in / Sign up

Export Citation Format

Share Document