scholarly journals Antiobesity Effects of the Ethanol Extract ofLaminaria japonicaAreshoung in High-Fat-Diet-Induced Obese Rat

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Woong Sun Jang ◽  
Se Young Choung

Laminaria japonicaAreshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects ofLaminaria japonicaAreshoung ethanol extract (LE) and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2) and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis.

2019 ◽  
Vol 122 (9) ◽  
pp. 1062-1072 ◽  
Author(s):  
Jian Sang ◽  
Hengxian Qu ◽  
Ruixia Gu ◽  
Dawei Chen ◽  
Xia Chen ◽  
...  

AbstractExcessive intake of high-energy diets is an important cause of most obesity. The intervention of rats with high-fat diet can replicate the ideal animal model for studying the occurrence of human nutritional obesity. Proteomics and bioinformatics analyses can help us to systematically and comprehensively study the effect of high-fat diet on rat liver. In the present study, 4056 proteins were identified in rat liver by using tandem mass tag. A total of 198 proteins were significantly changed, of which 103 were significantly up-regulated and ninety-five were significantly down-regulated. These significant differentially expressed proteins are primarily involved in lipid metabolism and glucose metabolism processes. The intake of a high-fat diet forces the body to maintain physiological balance by regulating these key protein spots to inhibit fatty acid synthesis, promote fatty acid oxidation and accelerate fatty acid degradation. The present study enriches our understanding of metabolic disorders induced by high-fat diets at the protein level.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2037 ◽  
Author(s):  
Petra Kroupova ◽  
Evert M. van Schothorst ◽  
Jaap Keijer ◽  
Annelies Bunschoten ◽  
Martin Vodicka ◽  
...  

Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (−40%), mesenteric adipose tissue (−43%), and hepatic lipid content (−64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.


Marine Drugs ◽  
2017 ◽  
Vol 15 (12) ◽  
pp. 386
Author(s):  
Wei-Tang Chang ◽  
Tsung-Yueh Lu ◽  
Ming-Ching Cheng ◽  
Hsun-Chi Lu ◽  
Mei-Fang Wu ◽  
...  

Author(s):  
Lenny Octavia ◽  
Soebagijo Adi Soelistijo ◽  
Agung Dwi Wahyu Widodo

Abstract  High-fat diet leads to obesity-associated chronic low-grade inflammation. Prebiotics, probiotics, and synbiotics produced short-chain fatty acids (SCFA), bonded to G protein-coupled receptors (GPR)-41 and GPR-43 decreased triglyceride deposits in adipocytes and liver, decreased fatty acid oxidation, increased glucose regulation and insulin sensitivity thus reduced the risk of obesity and metabolic syndrome. This study conducted in order to evaluate the effects of prebiotics, probiotics, and synbiotics on the body weight, blood glucose, triglyceride, and TNF-α used rats model, which were fed by a high-fat diet. Thirty-eight 6-8 weeks old male rats were fed by high-fat diet for three weeks, then rats were randomly divided into four groups, high-fat diet (HFD), a high fat diet with prebiotics supplementation (HFD+ PRE), a high fat diet with probiotics supplementation (HFD+PRO), and high-fat diet with synbiotics supplementation (HFD+SYN) for three weeks. Blood samples and body weight were measured at the third and sixth week. There was no effect of prebiotics, probiotics, and synbiotics on body weight, triglyceride levels, blood glucose, and TNF-α in rats fed a high-fat diet compared to control. These results suggested that supplementations gave inconsistent results with other studies and needed further researches.Keywords             : high fat diet, prebiotics, probiotics, synbiotics, meta-inflammationCorrespondence   : [email protected]


2014 ◽  
Vol 727 ◽  
pp. 66-74 ◽  
Author(s):  
Masanori Yokono ◽  
Toshiyuki Takasu ◽  
Yuka Hayashizaki ◽  
Keisuke Mitsuoka ◽  
Rumi Kihara ◽  
...  

2019 ◽  
Vol 317 (2) ◽  
pp. E337-E349
Author(s):  
Elizabeth T. Nguyen ◽  
Sarah Berman ◽  
Joshua Streicher ◽  
Christina M. Estrada ◽  
Jody L. Caldwell ◽  
...  

Psychological stress and excess glucocorticoids are associated with metabolic and cardiovascular diseases. Glucocorticoids act primarily through mineralocorticoid (MR) and glucocorticoid receptors (GR), and compounds modulating these receptors show promise in mitigating metabolic and cardiovascular-related phenotypes. CORT118335 (GR/MR modulator) prevents high-fat diet-induced weight gain and adiposity in mice, but the ability of this compound to reverse obesity-related symptoms is unknown. Adult male rats were subcutaneously administered CORT118335 (3, 10, or 30 mg/kg) or vehicle once daily. A 5-day treatment with CORT118335 at 30 mg/kg induced weight loss in rats fed a chow diet by decreasing food intake. However, lower doses of the compound attenuated body weight gain primarily because of decreased calorific efficiency, as there were no significant differences in food intake compared with vehicle. Notably, the body weight effects of CORT118335 persisted during a 2-wk treatment hiatus, suggesting prolonged effects of the compound. To our knowledge, we are the first to demonstrate a sustained effect of combined GR/MR modulation on body weight gain. These findings suggest that CORT118335 may have long-lasting effects, likely due to GR/MR-induced transcriptional changes. Prolonged (18 days) treatment of CORT118335 (10 mg/kg) reversed body weight gain and adiposity in animals fed a high-fat diet for 13 wk. Surprisingly, this occurred despite a worsening of the lipid profile and glucose homeostasis as well as a disrupted diurnal corticosterone rhythm, suggesting GR agonistic effects in the periphery. We conclude that species and tissue-specific targeting may result in promising leads for exploiting the metabolically beneficial aspects of GR/MR modulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ayman Saber Mohamed ◽  
Walaa Mohammed Ibrahim ◽  
Nashwah Ismail Zaki ◽  
Sara Bayoumi Ali ◽  
Amel M. Soliman

Background. The present study aimed to assess the effectiveness of clam extract in combination with atorvastatin against experimentally hyperlipidemia in rats.Method. Forty male rats were divided into 5 groups (8 rats /group): control, high fat diet (HFD), atorvastatin (AROR), clam extract (CE), and ATOR + CE.Results. The treatments with ATOR and /or CE significantly reduced the body weight gain, AST, ALT, ALP, TL, TC, TG, LDL-C, urea, creatinine, and uric acid levels while they increased total proteins, albumin, and HDL-C. The treatment with ATOR only did not cause any significant change in CK and MDA along with antioxidant system, while the treatment with CE alone or with ATOR significantly decreased CK and MDA accompanied by improving the antioxidant system.Conclusion. Combination of CE extract with atorvastatin improved the hyperlipidemic efficacy and reduced undesirable side effects especially on muscle.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Lamia Mabrouki ◽  
Ilhem Rjeibi ◽  
Jihen Taleb ◽  
Lazhar Zourgui

The consumption of a high-fat diet is linked to the development of obesity and considered a risk factor for cardiovascular diseases. The aim of this study was to evaluate the effect of the methanolic extract of Moringa oleifera leaves (MEML) on the high-fat diet- (HFD-) induced obesity and cardiac damage in rats. MEML, at a dose of 200 mg/kg/bw and 400 mg/kg/bw, was orally administrated to obese rats for 12 weeks. M. oleifera leaves were proved to be rich in nutrients and minerals. Diversity of phenolic compounds in MEML was evidenced via LC-ESI-MS analysis. The chronic administration of HFD in rats led to an increase in the body weight gain, total cholesterol, and triglycerides and reduction in the HDL-C levels. The obtained results indicated a significant increase (p<0.05) in the cardiac marker enzyme level in obese rats. A significant decrease (p<0.05) in the levels of cardiac catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities was accompanied with an increase of malondialdehyde (MDA) level in the high-fat diet group when compared to those of the control. The treatment with the MEML alleviated abnormalities in the serum biochemical parameters, balanced the antioxidant status, and reestablished the normal histological structure of the heart especially in the case of the higher concentration. Moringa oleifera leaves may be a promising candidate in the management of obesity and its related complications such as heart problems.


Author(s):  
Esther Ngadjui ◽  
Pepin Alango Nkeng-Efouet ◽  
Telesphore Benoit Nguelefack ◽  
Albert Kamanyi ◽  
Pierre Watcho

Abstract:: Obesity was reached by feeding female rats with a HFD for 10 weeks. Vaginal smear was observed daily for 3 weeks after animals were obese. Then, 70 animals with abnormal estrus cyclicity were selected and partitioned into two sets of 35 animals. Each set was further divided into seven groups of five rats. These obese rats with disrupted estrus cyclicity were orally administered the aqueous and methanolic extracts (100 and 500 mg/kg), distilled water (10 mL/kg), 5% Tween 80 (10 mL/kg) or lutenyl (0.8 µg/kg) once a day for 1 week (set I) or 4 weeks (set II). Estrus cyclicity, body weight gain, hematocrit, lipid profile, ovarian, uterine and hepatic growth indices were determined at the end of each treatment.: HFD increased the body weight of the animals by 27% and disrupted the estrus cyclicity by 98.44%. Aqueous extract (100 mg/kg) of: Our data support the anecdotal claims of


Author(s):  
Farouk K El-baz ◽  
Hanan F Aly

 Objective: This study was carried out to investigate the potential of Dunaliella salina microalgae to ameliorate obesity induced by high-fat diet (HFD) in male Wistar rats.Methods: Fifty rats weighing 150–160 g were fed HFD for 12 weeks. The rats were randomly divided into five groups of ten rats each. Obese rats were orally administered D. salina ethanolic extract (150 mg/Kg body weight), and orlistat as standard drug (12 mg/Kg body weight), for 6 weeks.Results: Treatment of obese rats with both D. salina and orlistat had a significant effect in reducing body and liver weights as well as visceral fat, inhibiting pancreatic lipase activity, decreased lipid profile, and increased fecal fat and ameliorating liver function enzymes activity, insulin, blood glucose, and leptin levels. Besides, food intake was insignificantly increased as a result of D. salina and orlistat treatments compared with normal control rats.Conclusion: It could be concluded that D. salina rich in β-carotene significantly reduced body weight gain and ameliorated several metabolic pathways implicated in obesity and its related complication. Hence, further intensive study must be carried out to formulate D. Salina extracts to apply as a promising natural anti-obesity nutraceutical drug.


Sign in / Sign up

Export Citation Format

Share Document