scholarly journals Investigation of Nano-Mechanical and- Tribological Properties of Hydrogenated Diamond Like Carbon (DLC) Coatings

2016 ◽  
Vol 33 (6) ◽  
pp. 769-776 ◽  
Author(s):  
Y.-R. Jeng ◽  
S. Islam ◽  
K-T. Wu ◽  
A. Erdemir ◽  
O. Eryilmaz

AbstractHydrogenated diamond like Carbon (H-DLC) is a promising lubricious coating that attracted a great deal of interest in recent years mainly because of its outstanding tribological properties. In this study, the nano-mechanical and -tribological properties of a range of H-DLC films were investigated. Specifically, four kinds of H-DLC coatings were produced on Si substrates in pure acetylene, pure methane, 25% methane + 75% hydrogen, 50% methane + 50% hydrogen discharge plasmas using a plasma enhanced chemical vapour deposition (PECVD) system. Nano indentation was performed to measure the mechanical properties such as hardness and young's modulus and nanoscartching was performed to investigate the frictional behavior and wear mechanism of the H-DLC samples in open air. Moreover, Vickers indentation method was utilized to assess the fracture toughness of the samples. The results revealed that there is a strong correlation between the mechanical properties (hardness, young's modulus, fracture toughness) and the friction coefficient of DLC coatings and the source gas chemistry. Lower hydrogen to carbon ratio in source gas leads to higher hardness, young's modulus, fracture toughness and lower friction coefficient. Furthermore, lower wear volume of the coated materials was observed when the friction coefficient was lower. It was also confirmed that lower hydrogen content of the DLC coating leads to higher wear resistance under nanoscratch conditions.

Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 370 ◽  
Author(s):  
Imane Bouabibsa ◽  
Salim Lamri ◽  
Frederic Sanchette

Metal containing hydrogenated diamond-like carbon coatings (Me-DLC, Me = Al, Ti, or Nb) of 3 ± 0.2 μm thickness were deposited by a magnetron sputtering-RFPECVD hybrid process in an Ar/H2/C2H2 mixture. The composition and structure were investigated by Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The residual stress was measured using the curvature method and nanoindentation was used to determine the hardness and the Young’s modulus. A Ball-on-disk tribometer was employed to investigate the frictional properties and sliding wear resistance of films. The results show that the properties depend on the nature and the Me content in the coatings. The doping of the DLC coatings leads to a decrease in hardness, Young’s modulus, and residual stresses. Wear rate of the films first decreases with intermediate Me contents and then increases for higher Me contents. Significant improvements in the friction coefficient on steel as well as in the wear rate are observed for all Al-DLC coatings, and, concerning the friction coefficient, the lowest value is measured at 0.04 as compared to 0.07 for the undoped DLC.


2012 ◽  
Vol 532-533 ◽  
pp. 131-134
Author(s):  
Xiao Ling ◽  
Shu Rong Yu ◽  
Jun Yan Zhang

Ni-doped diamond-like carbon coatings were deposited on silicon wafer by magnetron sputtering. The Ni content was controlled by changing the Ni target current. The Ni content, mechanical properties and tribological properties of the coatings were systematically studied by Raman spectroscopy, nano-indentation and ball-on-disc tester. The highest hardness and internal stress are obtained at the Ni content of 2.3%. The friction coefficient and wear rate lower with the decreased of the Ni content, which may be responsible for the excellent tribological properties.


2021 ◽  
Author(s):  
V. Sakthi Murugan ◽  
S. Madhu

Abstract The Silicon (Si) contained diamond like carbon (DLC) nanocomposite were prepared by using thermal chemical vapour deposition (CVD) technique by varying the acetylene (C2H2) flowrates. The scanning electron microscope (SEM) results showed a smoother surface of nanocomposite at low C2H2 flowrates. The atomic force microscope (AFM) reveals the increase of particle size and surface roughness of the composite with respect to the C2H2 flowrates. The mechanical properties were evaluated using the nanoindentation and it is observed that the hardness (H) and young’s modulus (E) of the nanocomposite increases with increase of the C2H2 flow rate. The internal stress (𝝈) was computed by using Stoney’s equation and it is noticed that due to the incorporation of Si the residual stress significantly decreased. The tribological properties of the nanocomposite were analysed by computing the H/E, H3/E2, plasticity index (PI) and elasticity index (EI). The results showed that the Si incorporated nanocomposite (Si-DLC) has an excellent tribological properties.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 107-111
Author(s):  
Anita PTAK ◽  
Piotr KOWALEWSKI

For the polymeric materials, changing of the temperature causes changes in mechanical and tribological properties of sliding pairs. The goal of the present study was to determine the change in Young's modulus and kinetic friction coefficient depending of the temperature. Three thermoplastic polymers, PA6, PET and PEEK, were tested. These materials cooperated in sliding motion with a C45 construction steel disc. As part of the experiment, the Young's modulus tests (by 3-point bending method) and kinetic friction coefficient studies (using pin-on-disc stand) were carried out. The temperature range of mechanical and tribological tests was determined at T = –50°C±20°C. Comparing the results of mechanical and tribological properties, there is a tendency to decrease the coefficient of friction as the Young's modulus increases while reducing the working temperature.


2013 ◽  
Vol 761 ◽  
pp. 83-86
Author(s):  
Hideaki Sano ◽  
Junichi Morisaki ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

Effects of carbon nanotubes (CNT) addition on mechanical properties, electric conductivity and oxidation resistance of CNT/Al2O3-TiC composite were investigated. It was found that flexural strength, Young’s modulus and fracture toughness of the composites were improved by addition of more than 2 vol%-CNT. In the composites with more than 3 vol%-CNT, the oxidation resistance of the composite was degraded. In comparison with Al2O3-26vol%TiC sample as TiC particle-percolated sample, the Al2O3-12vol%TiC-3vol%CNT sample, which is not TiC particle-percolated sample, shows almost the same mechanical properties and electric conductivity, and also shows thinner oxidized region after oxidation at 1200°C due to less TiC in the composite.


2006 ◽  
Vol 317-318 ◽  
pp. 305-308 ◽  
Author(s):  
Rak Joo Sung ◽  
Takafumi Kusunose ◽  
Tadachika Nakayama ◽  
Yoon Ho Kim ◽  
Tohru Sekino ◽  
...  

A novel transparent polycrystalline silicon nitride was fabricated by hot-press sintering with MgO and AlN as additives. The mixed powder with 3 wt.% MgO and 9 wt.% AlN was sintered at 1900oC for 1 hour under 30 MPa pressure in a nitrogen gas atmosphere. Transparent polycrystalline silicon nitride was successfully fabricated. The mechanical properties such as density, hardness, young’s modulus, fracture strength and fracture toughness were evaluated. The effect of α/β phase on the mechanical properties of transparent polycrystalline silicon nitride was investigated. The properties were changed depending on the amount of α/β phase. The hardness and Young's modulus increased with increasing the volume fraction of α-phase fraction as a reflection of the higher hardness of α-phase Si3N4. The fracture toughness and fracture strength decreased with decreasing the volume fraction of β-phase Si3N4.


2021 ◽  
Vol 1030 ◽  
pp. 3-10
Author(s):  
Teow Hsien Loong ◽  
Ananthan Soosai ◽  
Suresh Muniandy

The effect of doping small amounts of Magnesium Oxide ranging between 0 to 1 vol% on Zirconia Toughened Alumina (ZTA) composites which is one of main biomaterial used for production of total hip arthroplasty were investigated. The samples were produced via conventional two-stage sintering with T1 varies between 1450°C and 1550°C with heating rate of 20°C/min. The samples were then rapid cooled to T2 set at 1400°C with holding time of 12 hours. The microstructural and mechanical properties of the two-stage sintered ZTA are then investigated to determine the feasibility of MgO addition. Combination of two-stage sintering at T1 above 1500 and also small amount of MgO up to 0.5 vol% were shown to have positive effect on ZTA which exhibited improvement on its grain size, mechanical properties such as Vickers hardness, Young’s modulus and fracture toughness compared to undoped ZTA composites. The sample with 0.5 vol% MgO addition sintered at T1 of 1500°C and T2 1400°C was able to achieve Vickers hardness of 19.6 GPa, Young’s modulus of 408 GPa and fracture toughness of 6.8 MPam1/2 without significant grain growth compared to undoped ZTA composites.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Guo ◽  
Peiling Ke ◽  
Aiying Wang

W-incorporated diamond-like carbon (W-C:H) films were fabricated by a hybrid beams system consisting of a DC magnetron sputtering and a linear ion source. The W concentration (1.08~31.74 at.%) in the film was controlled by varying the sputtering current. The cross-sectional topography, composition, and microstructure of the W-C:H films were investigated by SEM, XPS, TEM, and Raman spectroscopy. The mechanical and tribological properties of the films as a function of W concentration were evaluated by a stress-tester, nanoindentation, and ball-on-disk tribometer, respectively. The results showed that films mainly exhibited the feature of amorphous carbon when W concentration of the films was less than 4.38 at.%, where the incorporated W atoms would be bonded with C atoms and resulted in the formation ofWC1-xnanoparticles. The W-C:H film with 4.38 at.% W concentration showed a minimum value of residual compressive stress, a higher hardness, and better tribological properties. Beyond this W concentration range, both the residual stress and mechanical properties were deteriorated due to the growth of tungsten carbide nanoparticles in the carbon matrix.


2019 ◽  
Vol 85 (2) ◽  
pp. 21301 ◽  
Author(s):  
Stéphanie Carquigny ◽  
Jamal Takadoum ◽  
Steliana Ivanescu

The effect of nitrogen implantation on mechanical and tribological properties of Ti-6Al-4V and Ti-10Zr-10Nb-5Ta alloys was studied. Increasing implantation dose from 1 × 1016 N+/cm2 to 2 × 1017 N+/cm2 leads to increase gradually both hardness and Young's modulus. The results show that implantation of 2 × 1017 N+/cm2 allowed to double the value of Young's modulus and to triple the value of hardness. Friction tests that have been conducted against 100Cr6 steel and alumina balls showed that tribological behavior of the two alloys depend on the nature of the counterpart material and is strongly affected by the implanted dose of nitrogen.


Sign in / Sign up

Export Citation Format

Share Document