scholarly journals Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhang Junwei ◽  
Li Jinping ◽  
Quan Xiaojuan

The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 29-31
Author(s):  
Yoshihiro Iijima

Permafrost plays a hugely significant role in sustaining the global climate for many reasons. As it thaws, gases (usually methane and carbon dioxide) that have lain trapped underneath the ice for millennia are released. These gases then enter the atmosphere and accelerate global warming which leads to more permafrost degradation and it eventually becomes a problem which exacerbates itself. In recent times, the warming and thawing of the surface layer of the permafrost region in northeastern Eurasia has caused serious impacts on the living environment of local residents. In many ways, the thawing of permafrost can be seen as a new natural disaster and, as such, it requires understanding from local populations to put measures in place to mitigate the effects. Associate Professor Yoshihiro Iijima is part of a international team of researchers investigating the effects of climate change on the permafrost regions of Russia and Mongolia. The findings could help local populations introduce conservation activities to their societies


Author(s):  
Lev Khazanovich ◽  
Raul Velasquez ◽  
Edouard G. Nesvijski

To select the optimal strategy for treatment of a cracked asphalt pavement, it is important to determine the extent of cracking (partial depth or full depth). This paper presents the results of an explanatory study aimed at examining the applicability of the ultrasonic technology for evaluation of cracks and longitudinal joints in flexible pavements. It was shown that this technology, which has been used successfully for many years for the evaluation of concrete structures, could provide a simple, quick, and objective procedure for evaluation of surface distresses in asphalt concrete pavements. The results of laboratory testing and field testing at the Minnesota Road Research Project test facility demonstrate the potential of this technology.


Author(s):  
Wei Wang ◽  
Jinlong Li ◽  
Xianmin Ke ◽  
Kai Chen ◽  
Zeyong Gao ◽  
...  

Thermokarst lakes and permafrost degradation in the Qinghai-Tibet Plateau (QTP) resulting from global warming have been considerably affected the local hydrological and ecological process in recent decades. Simulation with coupled moisture-heat models that follows talik formation in the Beiluhe Basin (BLB) in the hinterland of permafrost regions on the QTP provides insight into the interaction between groundwater flow and freezing-thawing process. A total of 30 modified SUTRA schemes have been established to examine the effect of hydrodynamic forces, permeability and climate. The simulated results show that the hydrodynamic conditions impact the permafrost degradation surrounding the lake, thereby further affecting groundwater flow and late-stage freezing-thawing process. The thickness of the active layer varies with time and location under different permeability conditions, which significantly influences the occurrence of a breakthrough of the lake bottom. Warmer climate accelerates thawing and decreases the required time of formation of the breakthrough zone. Overall, these results indicate that explicit consideration of hydrologic process is critical to improve the understanding of environmental and ecological changes in cold regions.


2012 ◽  
Vol 49 (9) ◽  
pp. 1005-1014 ◽  
Author(s):  
Wei Ma ◽  
Zhi Wen ◽  
Yu Sheng ◽  
Qingbai Wu ◽  
Dayan Wang ◽  
...  

Due to the special engineering geology characteristics of permafrost, construction in permafrost regions tends to result in serious permafrost-related engineering problems. Thaw settlement induced by permafrost degradation is the principal challenge for railway construction on the Qinghai-Tibetan Plateau. It threatens the stability and safety of the railway system, especially in warm and ice-rich permafrost regions. Thaw settlement in section DK1139+780 along the Qinghai-Tibetan railway is a potential risk to the safety of the railway, and a combination of closed thermosyphons and crushed rock revetment was used to remedy permafrost warming and thaw settlement of the embankment. Based on ground temperatures and embankment deformations observed at this site since 2002, the effects of the remedial measures were evaluated. The results show that the remedial measures lowered the ground temperature and raised the permafrost table. The crushed rock slope protection acted as an insulation layer and reduced heat flux into the embankment. The thermosyphons lowered the permafrost temperature and had a good cooling effect on the underlying permafrost. The results show that the remedial measures using two-phase thermosyphons and crushed rock revetment decreased the settlement of the embankment and improved the stability of the railway system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chao Liu ◽  
Yanyu Song ◽  
Xingfeng Dong ◽  
Xianwei Wang ◽  
Xiuyan Ma ◽  
...  

Peatland is a key component of terrestrial ecosystems in permafrost regions and have important effects on climate warming. Soil enzymes are involved in biogeochemical cycle of soil carbon (C), nitrogen (N) and phosphorus (P), which can be used as early sensitive indicators of soil nutrient changes caused by climate change. To predict the possible effects of permafrost degradation on soil enzymes in peatlands, ten peatlands from three types of permafrost regions along the permafrost degradation sequence (predominantly continuous permafrost region-predominantly continuous and island permafrost region-sparsely island permafrost region) in northeast China were selected to examine the activities of soil invertase, β-glucosidase, urease and acid phosphatase and their relationships with soil physicochemical properties. The results demonstrated that permafrost type had significant effect on soil enzyme activities. Soil enzyme activities in predominantly continuous and island permafrost region were significantly higher than those in sparsely island permafrost region and predominantly continuous permafrost region. The activities of four soil enzymes were higher in 0–15 cm than 15–30 cm soil layer. Soil enzymes activities were positively correlated with soil ammonia nitrogen (NH4+-N), soil moisture content (SMC), total phosphorus (TP) and total nitrogen (TN), but negatively correlated with soil nitrate nitrogen (NO3−-N). Soil inorganic nitrogen and moisture contents were the main factors affecting soil enzyme activities, with NH4+-N accounted for 41.6% of the variance, SMC 29.6%, and NO3−-N 11.0%. These results suggested that permafrost degradation may change soil enzyme activities by changing soil physicochemical properties. In this study, only 0–30 cm peat soil in permafrost regions was collected during the complete thawing period of permafrost active layer, further studies should be placed on the change of soil enzyme activities in active layer and permafrost layer during freezing and thawing process in the southernmost location of northeast China in the Eurasia permafrost body and boreal forest belt.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zhizhong Zhao ◽  
Mengchen Li ◽  
Yu Wang ◽  
Wenwen Chen ◽  
Yulong Zhao ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


DYNA ◽  
2016 ◽  
Vol 83 (196) ◽  
pp. 194-203
Author(s):  
Myriam Rocío Pallares Muñoz ◽  
Julián Andrés Pulecio-Díaz

<p>The effect of a dual tire pressure on the design parameters of thick asphalt pavements using finite element freeware EverStressFE©1.0 is evaluated. This is trying to represent more adjusted the footprint shape and intensity of stress generated by the tires of vehicles. To validate the elastic multilayer EverStress©5.0 software was used. The results of the deformations can be concluded that the asphalt pavement designs made with analytical methods may be slightly oversized and consequently increase the cost of construction of pavements. This study marks a route to analyze the sensitivity of various factors that may affect the design of asphalt pavements. Future research is expected to integrate dynamic conditions by introducing results of field tests to full scale.</p>


2021 ◽  
Vol 4 (6) ◽  
Author(s):  
Zecheng Ni ◽  
Shijing Chen ◽  
Yihuan Li ◽  
Hongxi Peng ◽  
Jiawen Liang ◽  
...  

The early asphalt pavement in our country severely reduced the road performance due to various external factors during the use process. According to incomplete statistics, there are more asphalt pavements that need to be renovated and repaired every year in China, and the amount of construction waste such as asphalt concrete and other construction waste reaches 1,000. About ten thousand tons. If such a huge amount of construction waste is not used, it will inevitably cause great pollution to the environment. If it can be reused, not only will it be environmentally friendly and energy-saving, it will also save more than one billion yuan in costs. In view of the above problems, this article conducts related Research and Analysis on the Principle in Plant Cold Recycling for Foamed Bitumen and Mixture Performance to provide reference for future projects.


2015 ◽  
Vol 12 (23) ◽  
pp. 6915-6930 ◽  
Author(s):  
J. E. Vonk ◽  
S. E. Tank ◽  
P. J. Mann ◽  
R. G. M. Spencer ◽  
C. C. Treat ◽  
...  

Abstract. As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.


Sign in / Sign up

Export Citation Format

Share Document