scholarly journals Photocatalytic Degradation of 2,4-Dichlorophenol Using Nanosized Na2Ti6O13/TiO2Heterostructure Particles

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zicong Jian ◽  
Shaobin Huang ◽  
Yongqing Zhang

Na2Ti6O13/TiO2composite particles were synthesized through the hydrolyzation of tetrabutyl titanate in a reverse microemulsion and characterized by thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The photocatalytic property of Na2Ti6O13/TiO2was evaluated by degradation of 2,4-dichlorophenol(2,4-DCP) under 40 W ultraviolet lamp (λ=365 nm) irradiation and compared with commercial P25-TiO2in the same condition. The results showed that the synthesized nanobelts Na2Ti6O13/TiO2heterostructures had typical width from 80 to 100 nm, with thickness less than 40 nm and length up to 5 μm. Such Na2Ti6O13/TiO2nanosized particles exhibited better photocatalytic activity than that of P25-TiO2, and the degradation rate of 2,4-DCP with initial concentration of 0.02 g/L reached 99.4% at the end of 50 min.

Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


High purity barium titanate BaTiO3 was successfully synthesized by using the sol-gel technique. Barium acetate Ba(CH3COO)2 and tetrabutyl titanate, Ti(C4H9O)4 was dissolved moderately in the solvent of glacial acetic acid and ethanol was added as the chemical modifier. The synthesized BaTiO3 nanoparticle was calcined at the temperature range of 700 ºC to 1100 ºC. The powders were further characterized by X-ray diffraction and scanning electron microscopy (SEM). Fined BaTiO3 powders result indicates the phase of tetragonal structures and high crystallites of BaTiO3. It was observed that the crystallinity and particle size of BaTiO3 is greatly influenced by the calcination temperature.


Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 305 ◽  
Author(s):  
Yan Zhang ◽  
Hui Zhang ◽  
Fang Wang ◽  
Li-Xia Wang

The ginger essential oil/β-cyclodextrin (GEO/β-CD) composite, ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) particles and ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) microsphere were prepared with the methods of inclusion, ionic gelation and spray drying. Their properties were studied by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetry analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the particle size of GEO/β-CD composite was smaller than that of β-CD and GEO/β-CD/CTS particles were loose and porous, while the microsphere obtained by spray drying had certain cohesiveness and small particle size. Besides, results also indicated that β-CD/CTS could modify properties and improve the thermal stability of GEO, which would improve its application value in food and medical industries.


2011 ◽  
Vol 110-116 ◽  
pp. 547-552 ◽  
Author(s):  
Yu Xin Wang ◽  
Jing Xu ◽  
Xing Guo Cheng ◽  
Hong Fang Xu ◽  
Li Jun Liu

ZnO nanostructures with different morphology have been successfully fabricated by a simple relative low temperature approach at 90 °C for 5 h without surfactant assistance. These structures can be easily tailed using varied concentrations of sodium hydroxide (NaOH) and different amounts of the hydrazine hydrate (N2H4·H2O). X-ray diffraction (XRD) result proves the formation of ZnO with wurtzite structure. Microstructure as revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicates that the rod-like and chrysanthemum-like ZnO nanostructures contain many radial nanorods, which grow along the [0001] direction. Furthermore, the as-prepared ZnO nanomaterials exhibit high activity on the photo-catalytic degradation of typical persistent organic pollutants (POPs), indicating that they are promising as semiconductor photo-catalysts.


2014 ◽  
Vol 934 ◽  
pp. 110-115
Author(s):  
Li Gao ◽  
Er Juan Zhi ◽  
Ping Li Wang ◽  
Jun Hui Ji

In this study, poly (butylene succinate) (PBS)/nature rubber (NR) composites were prepared, and the effects of NR content on the biodegradability were evaluated by vermiculite-degradation test. X-ray Diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the degraded blends. The weight losses of PBS/NR composites are higher than that of pure PBS, and increased with adding NR content. The weight loss of 30% NR content composite after 120 days is 16.84%. The XRD and DSC results show that the crystallinity of PBS/NR composites increase after buried in vermiculite. These results were confirmed using SEM observations by the presence of many large holes and more cracks in the degradation surface morphology of the increasing content of NR. It was observed that PBS/NR composites are green-composites or eco-materials.


2006 ◽  
Vol 317-318 ◽  
pp. 561-564
Author(s):  
Huang Chen ◽  
Tae Ho Kim ◽  
Soo Wohn Lee ◽  
Ho Sung Aum ◽  
Bo Young Hur ◽  
...  

The phase and microstructure of four kinds of plasma sprayed TiO2 coatings (P25, ST, NK, KT) were characterized by XRD (X-ray Diffraction), FE-SEM (Field Emission Scanning Electron Microscope) and TEM ( Transmission Electron Microscopy). Their photocatalytic properties were discussed in relation to phase composition and microstructure. The FE-SEM observation results reveal that there are quite a number of nanoparticles on the surfaces of all four kinds of plasma sprayed TiO2 coatings, which provide photocatalytic reactive sites. Based on the observation results of FE-SEM and TEM, the microstructure schematic of plasma sprayed TiO2 coatings using nanoparticles as feedstock is suggested. The best photocatalytic property of P25 coating among the four plasma sprayed TiO2 coatings is attributed to the combination of its fine “cauliflower” structure and the highest anatase content.


2012 ◽  
Vol 48 (2) ◽  
pp. 259-264 ◽  
Author(s):  
E. Güler ◽  
M. Güler

Deformation induced martensite properties were examined according to existing martensite morphology, crystallography and formation temperatures for different prior austenite homogenization conditions in Fe-30%Ni-5%Cu alloy. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques were employed to investigation. Scanning electron microscope observations showed elongated deformation induced martensite morphology in the austenite phase of alloy. As well, after deformation martensite start temperatures (Ms) were determined as -101?C and -105?C from DSC measurements for different homogenization conditions. In addition, X-ray diffraction analysis revealed the face centred cubic (fcc) of austenite phases and body centred cubic (bcc) deformation induced martensite phases for all studied samples.


2012 ◽  
Vol 557-559 ◽  
pp. 1592-1595 ◽  
Author(s):  
Xiao Lin Liu ◽  
Wen Lu Guo ◽  
Jing Jing Ma

B-doped TiO2 nanoparticles have been successfully prepared using hydrothermal synthesis with tetrabuttyl titanate and boric acid as precursor. The prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), scanning electron microscope (SEM). The B-doped TiO2 nanoparticles were red-shifted than P25. And the degradation rate of B-TiO2 is 72.62% in 120 min by degradation of salicylic acid under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document