scholarly journals A Space Domain Energetics Study for CO2Increasing Based on SRES-A2 Emission Scenario

2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
José Augusto P. Veiga ◽  
Tercio Ambrizzi ◽  
Alexandre B. Pezza

This work presents a detailed investigation of the changes in the global pattern of energetics under a prescribed temporal evolution of CO2concentration as proposed by the A2 IPCC forcing scenario (SRES-A2) using a combination of reanalysis and climate models. A validation climatology is computed using the classic Lorenz energetic formulation, with generation and dissipation components estimated as residuals. The results show a good agreement overall between models and reanalysis for the present day climate, noting that the models generally give more zonal energy and less eddy energy when compared to the reanalysis. Spatial analysis translates the above results as models depicting greater energy associated with the subtropical jet streams than effectively observed. This pattern is observed regardless of season or hemisphere. The projections for future climate scenarios suggest a further increase in the zonal kinetic energy, with a slight average reduction in all other terms. This pattern is seen in association with a substantial decrease in the conversion term mainly associated with sensible heat transport (CA) under a warmer climate. In agreement with recent work in the literature, our results suggest an overall reduction of the global energetics under increasing CO2.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tigistu Yisihak Ukumo ◽  
Adane Abebe ◽  
Tarun Kumar Lohani ◽  
Muluneh Legesse Edamo

Purpose The purpose of this paper is to prepare flood hazard map and show the extent of flood hazard under climate change scenarios in Woybo River catchment. The hydraulic model, Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the floods under future climate scenarios. The impact of climate changes on severity of flooding was evaluated for the mid-term (2041–2070) and long-term (2071–2100) with relative to a baseline period (1971–2000). Design/methodology/approach Future climate scenarios were constructed from the bias corrected outputs of five regional climate models and the inflow hydrographs for 10, 25, 50 and 100 years design floods were derived from the flow which generated from HEC-hydrological modeling system; that was an input for the HEC-RAS model to generate the flood hazard maps in the catchment. Findings The results of this research show that 25.68% of the study area can be classified as very high hazard class while 28.56% of the area is under high hazard. It was also found that 20.20% is under moderate hazard and about 25.56% is under low hazard class in future under high emission scenario. The projected area to be flooded in far future relative to the baseline period is 66.3 ha of land which accounts for 62.82% from the total area. This study suggested that agricultural/crop land located at the right side of the Woybo River near the flood plain would be affected more with the 25, 50 and 100 years design floods. Originality/value Multiple climate models were assessed properly and the ensemble mean was used to prepare flood hazard map using HEC-RAS modeling.


2021 ◽  
Author(s):  
Henri Pinheiro ◽  
Tercio Ambrizzi ◽  
Kevin Hodges ◽  
Manoel Gan ◽  
Kelen Andrade ◽  
...  

Abstract This is the first study to show the global Cut-off Low (COL) activity in 23 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and 17 models from Phase 6 (CMIP6). The COL historical simulations for the period 1979-2005 obtained from the CMIP5 and CMIP6 models and their ensembles are compared with the ERA5 reanalysis using an objective feature-tracking algorithm. The results show that the CMIP6 models simulate the spatial distribution of COLs more realistically than the CMIP5 models. Some improvements include reduced equatorward bias and underestimation over regions of high COL density. Reduced biases in CMIP6 are mainly attributed to the improved representation of the zonal wind due to the poleward shift of the subtropical jet streams. The CMIP5 models systematically underestimate the COL intensity as measured by the T42 vorticity at 250 hPa. In CMIP6, the intensity is still underestimated in summer, but overestimated in winter in part due to increased westerlies. The overestimation is enhanced by the finer spatial resolution models that identify more of the strong systems compared to coarser resolution models. Other aspects of COLs such as their temporal and lifetime distributions are modestly improved in CMIP6 compared to CMIP5. Finally, the predictive skill of climate models is evaluated using five variables and the Taylor diagram. We find that 10 out of the 15 best CMIP5-CMIP6 models belong to CMIP6, and this highlights the overall improvement compared to its predecessor CMIP5. Despite this, the use of the multi-model ensemble average seems to be better in simulating COLs than individual models.


2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


2021 ◽  
Author(s):  
Ignazio Giuntoli ◽  
Federico Fabiano ◽  
Susanna Corti

AbstractSeasonal predictions in the Mediterranean region have relevant socio-economic implications, especially in the context of a changing climate. To date, sources of predictability have not been sufficiently investigated at the seasonal scale in this region. To fill this gap, we explore sources of predictability using a weather regimes (WRs) framework. The role of WRs in influencing regional weather patterns in the climate state has generated interest in assessing the ability of climate models to reproduce them. We identify four Mediterranean WRs for the winter (DJF) season and explore their sources of predictability looking at teleconnections with sea surface temperature (SST). In particular, we assess how SST anomalies affect the WRs frequencies during winter focussing on the two WRs that are associated with the teleconnections in which the signal is more intense: the Meridional and the Anticyclonic regimes. These sources of predictability are sought in five state-of-the-art seasonal forecasting systems included in the Copernicus Climate Change Services (C3S) suite finding a weaker signal but an overall good agreement with reanalysis data. Finally, we assess the ability of the C3S models in reproducing the reanalysis data WRs frequencies finding that their moderate skill increases during ENSO intense years, indicating that this teleconnection is well reproduced by the models and yields improved predictability in the Mediterranean region.


2008 ◽  
Vol 8 (2) ◽  
pp. 7781-7804 ◽  
Author(s):  
K.-J. Liao ◽  
E. Tagaris ◽  
K. Manomaiphiboon ◽  
C. Wang ◽  
J.-H. Woo ◽  
...  

Abstract. Impacts of uncertain climate forecasts on future regional air quality are investigated using downscaled MM5 meteorological fields from the NASA GISS and MIT IGSM global climate models and the CMAQ model in 2050 in the continental US. Three future climate scenarios: high-extreme, low-extreme and base, are developed for regional air quality simulations. GISS, with the IPCC A1B scenario, is used for the base case. IGSM results, in the form of probabilistic distributions, are used to perturb the base case climate to provide 0.5th and 99.5th percentile climate scenarios. Impacts of the extreme climate scenarios on concentrations of summertime fourth-highest daily maximum 8-h average ozone are predicted to be up to 10 ppbv (about one-eighth of the current NAAQS of ozone) in some urban areas, though average differences in ozone concentrations are about 1–2 ppbv on a regional basis. Differences between the extreme and base scenarios in annualized PM2.5 levels are very location dependent and predicted to range between −1.0 and +1.5 μg m−3. Future annualized PM2.5 is less sensitive to the extreme climate scenarios than summertime peak ozone since precipitation scavenging is only slightly affected by the extreme climate scenarios examined. Relative abundances of biogenic VOC and anthropogenic NOx lead to the areas that are most responsive to climate change. Such areas may find that climate change can significantly offset air quality improvements from emissions reductions, particularly during the most severe episodes.


1999 ◽  
Vol 62 (2) ◽  
pp. 219-232 ◽  
Author(s):  
E. VERWICHTE ◽  
V. M. NAKARIAKOV ◽  
A. W. LONGBOTTOM

The temporal evolution of weakly nonlinear, plane, linearly polarized Alfvén pulses in a cold homogeneous plasma is investigated. A static initial pulse-like disturbance in transverse velocity produces two Alfvén pulses that travel in opposite directions along the magnetic field. The ponderomotive force of the two pulses produces a static shock in longitudinal velocity at the starting position. The travelling pulses form a shock front that is governed by the scalar Cohen–Kulsrud equation. We find good agreement between the analytical solutions we derive and the results from a fully nonlinear numerical MHD code.


Author(s):  
Alejandra R. Enríquez ◽  
Marta Marcos ◽  
Amaya Álvarez-Ellacuría ◽  
Alejandro Orfila ◽  
Damià Gomis

Abstract. In this work we assess the impacts in reshaping coastlines as a result of sea level rise and changes in wave climate. The methodology proposed combines the SWAN and SWASH wave models to resolve the wave processes from deep waters up to the swash zone in two micro-tidal sandy beaches in Mallorca Island, Western Mediterranean. In a first step, the modelling approach is validated with observations from wave gauges and from the shoreline inferred from video monitoring stations, showing a good agreement between them. Afterwards, the modelling setup is applied to the 21st century sea level and wave projections under two different climate scenarios, RCP45 and RCP85. Sea level projections were retrieved from state of the art regional estimates, while wave projections were obtained from regional climate models. Changes in the coastline are explored under mean and extreme wave conditions. Our results indicate that the studied beaches would suffer a coastal retreat between 7 and up to 50 m, equivalent to half of the present-day aerial beach surface, under the climate scenarios considered.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Bright Freduah ◽  
Dilys MacCarthy ◽  
Myriam Adam ◽  
Mouhamed Ly ◽  
Alex Ruane ◽  
...  

Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.


2020 ◽  
Vol 2 ◽  
Author(s):  
Peter Köhler

The CO2 removal model inter-comparison (CDRMIP) has been established to approximate the usefulness of climate mitigation by some well-defined negative emission technologies. I here analyze ocean alkalinization in a high CO2 world (emission scenario SSP5-85-EXT++ and CDR-ocean-alk within CDRMIP) for the next millennia using a revised version of the carbon cycle model BICYCLE, whose long-term feedbacks are calculated for the next 1 million years. The applied model version not only captures atmosphere, ocean, and a constant marine and terrestrial biosphere, but also represents solid Earth processes, such as deep ocean CaCO3 accumulation and dissolution, volcanic CO2 outgassing, and continental weathering. In the applied negative emission experiment, 0.14 Pmol/yr of alkalinity—comparable to the dissolution of 5 Pg of olivine per year—is entering the surface ocean starting in year 2020 for either 50 or 5000 years. I find that the cumulative emissions of 6,740 PgC emitted until year 2350 lead to a peak atmospheric CO2 concentration of nearly 2,400 ppm in year 2326, which is reduced by only 200 ppm by the alkalinization experiment. Atmospheric CO2 is brought down to 400 or 300 ppm after 2730 or 3480 years of alkalinization, respectively. Such low CO2 concentrations are reached without ocean alkalinization only after several hundreds of thousands of years, when the feedbacks from weathering and sediments bring the part of the anthropogenic emissions that stays in the atmosphere (the so-called airborne fraction) below 4%. The efficiency of carbon sequestration by this alkalinization approach peaks at 9.7 PgC per Pmol of alkalinity added during times of maximum anthropogenic CO2 emissions and slowly declines to half this value 2000 years later due to the non-linear marine chemistry response and ocean-sediment processes. In other words, ocean alkalinization sequesters carbon only as long as the added alkalinity stays in the ocean. To understand the basic model behavior, I analytically explain why in the simulation results a linear relationship in the transient climate response (TCR) to cumulative emissions is found for low emissions (similarly as for more complex climate models), which evolves for high emissions to a non-linear relation.


Sign in / Sign up

Export Citation Format

Share Document