scholarly journals Protection Effect of Zhen-Wu-Tang on Adriamycin-Induced Nephrotic Syndrome via Inhibiting Oxidative Lesions and Inflammation Damage

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chun-ling Liang ◽  
Jun-biao Wu ◽  
Jie-mei Lai ◽  
Shu-fang Ye ◽  
Jin Lin ◽  
...  

Zhen-wu-tang (ZWT), a well-known formula in China, is widely used to treat chronic kidney diseases. However, very little information on ZWT’s mechanism of action is currently available. In this study, we investigated the possible protective role and underlying mechanism of ZWT on nephrotic syndrome (NS) induced by Adriamycin (intravenous injection, 6.0 mg/kg) in rats using biochemical and histopathological approaches. ZWT decreased urine protein excretion and the serum levels of total cholesterol, triglycerides, blood urea nitrogen, and creatinine significantly in diseased rats. A decrease in plasma levels of total protein and albumin was also recorded in nephropathic rats. Pathological results show an improved pathological state and recovering glomerular structure in ZWT treatment groups. ZWT decreased renal IL-8 level but increased renal IL-4 level. In addition, rats subjected to ZWT exhibited less IgG deposition in glomerulus compared with model group. RT-PCR results showed that ZWT decreased the mRNA expression of NF-κB p65 and increased the mRNA expression of IκB. Furthermore, ZWT reduced the level of MDA and increased SOD activity. These results demonstrated that ZWT ameliorated Adriamycin-induced NS in rats possibly by inhibiting Adriamycin-induced inflammation damage, enhancing body’s antioxidant capacity, thereby protecting glomerulus from injury.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mina Thabet Kelleni ◽  
Entesar Farghaly Amin ◽  
Aly Mohamed Abdelrahman

Doxorubicin (DOX) is a widely used antineoplastic drug whose efficacy is limited by its cardiotoxicity. The aim of this study was to investigate the possible protective role of the antidiabetic drugs metformin (250 mg/kg dissolved in DW p.o. for seven days) and sitagliptin (10 mg/kg dissolved in DW p.o. for seven days) in a model of DOX-induced (single dose 15 mg/kg i.p. at the fifth day) cardiotoxicity in rats. Results of our study revealed that pretreatment with metformin or sitagliptin produced significant (P<0.05) cardiac protection manifested by a significant decrease in serum levels of LDH and CK-MB enzymes and cardiac MDA and total nitrites and nitrates levels, a significant increase in cardiac SOD activity, and remarkable improvement in the histopathological features as well as a significant reduction in the immunohistochemical expression of COX-2, iNOS, and caspase-3 enzymes as compared to DOX group. These results may suggest using metformin and/or sitagliptin as preferable drugs for diabetic patients suffering from cancer and receiving DOX in their chemotherapy regimen.


Author(s):  
Monika Semwal

Nephrotic syndrome is a collection of symptoms due to kidney damage. This includes protein in the urine, low blood albumin levels, high blood lipids, and significant swelling. Other symptoms may include weight gain, feeling tired, and foamy urine. Complications may include blood clots, infections, and high blood pressure. Causes include a number of kidney diseases such as focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. It may also occur as a complication of diabetes or lupus. The underlying mechanism typically involves damage to the glomeruli of the kidney. Diagnosis is typically based on urine testing and sometimes a kidney biopsy. It differs from nephritic syndrome in that there are no red blood cells in the urine. Treatment is directed at the underlying cause. Other efforts include managing high blood pressure, high blood cholesterol, and infection risk. A low salt diet and limiting fluids is often recommended. About 5 per 100,000 people are affected per year. The usual underlying cause varies between children and adults.


2016 ◽  
Vol 310 (7) ◽  
pp. F669-F678 ◽  
Author(s):  
Mi Bai ◽  
Ruochen Che ◽  
Yue Zhang ◽  
Yanggang Yuan ◽  
Chunhua Zhu ◽  
...  

Evidence has demonstrated that aldosterone (Aldo) is involved in the development and progression of chronic kidney diseases. The purpose of the present study was to investigate the role of autophagy in Aldo-induced podocyte damage and the underlying mechanism. Mouse podocytes were treated with Aldo in the presence or absence of 3-methyladenine and N-acetylcysteine. Cell apoptosis was investigated by detecting annexin V conjugates, apoptotic bodies, caspase-3 activity, and alterations of the podocyte protein nephrin. Autophagy was evaluated by measuring the expressions of light chain 3, p62, beclin-1, and autophagy-related gene 5. Aldo (10−7 mol/l) induced podocyte apoptosis, autophagy, and downregulation of nephrin protein in a time-dependent manner. Aldo-induced apoptosis was further promoted by the inhibition of autophagy via 3-methyladenine and autophagy-related gene 5 small interfering RNA pretreatment. Moreover, Aldo time dependently increased ROS generation, and H2O2 (10−4 mol/l) application remarkably elevated podocyte autophagy. After treatment with N-acetylcysteine, the autophagy induced by Aldo or H2O2 was markedly attenuated, suggesting a key role of ROS in mediating autophagy formation in podocytes. Inhibition of ROS could also lessen Aldo-induced podocyte injury. Taken together, our findings suggest that ROS-triggered autophagy played a protective role against Aldo-induced podocyte injury, and targeting autophagy in podocytes may represent a new therapeutic strategy for the treatment of podocytopathy.


2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
C. Heilmann ◽  
U. Geisen ◽  
S. Weiss ◽  
G. Trummer ◽  
M. Berchtold-Herz ◽  
...  
Keyword(s):  

2020 ◽  
Vol 16 (1) ◽  
pp. 85-89
Author(s):  
Mahesh M. Gouda ◽  
Ashwini Prabhu ◽  
Varsha Reddy S.V. ◽  
Rafa Jahan ◽  
Yashodhar P. Bhandary

Background: Bleomycin (BLM) is known to cause DNA damage in the Alveolar Epithelial Cells (AECs). It is reported that BLM is involved in the up-regulation of inflammatory molecules such as neutrophils, macrophages, chemokines and cytokines. The complex underlying mechanism for inflammation mediated progression of lung injury is still unclear. This investigation was designed to understand the molecular mechanisms associated with p53 mediated modulation of Plasminogen Activator Inhibitor-I (PAI-I) expression and its regulation by nano-curcumin formulation. Methods: A549 cells were treated with BLM to cause the cellular damage in vitro and commercially available nano-curcumin formulation was used as an intervention. Cytotoxic effect of nano-curcumin was analyzed using Methyl Thiazolyl Tetrazolium (MTT) assay. Protein expressions were analyzed using western blot to evaluate the p53 mediated changes in PAI-I expression. Results: Nano-curcumin showed cytotoxicity up to 88.5 % at a concentration of 20 μg/ml after 48 h of treatment. BLM exposure to the cells activated the phosphorylation of p53, which in turn increased PAII expression. Nano-curcumin treatment showed a protective role against phosphorylation of p53 and PAI-I expression, which in turn regulated the fibro-proliferative phase of injury induced by bleomycin. Conclusion: Nano-curcumin could be used as an effective intervention to regulate the severity of lung injury, apoptosis of AECs and fibro-proliferation during pulmonary injury.


2021 ◽  
Vol 22 (14) ◽  
pp. 7642
Author(s):  
Zoran V. Popovic ◽  
Felix Bestvater ◽  
Damir Krunic ◽  
Bernhard K. Krämer ◽  
Raoul Bergner ◽  
...  

The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001–p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = −0.5068, p = 0.0031; Pearson r = −0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Wagner de Fátima Pereira ◽  
Gustavo Eustáquio Alvim Brito-Melo ◽  
Cláudia Martins Carneiro ◽  
Dirceu de Sousa Melo ◽  
Karine Beatriz Costa ◽  
...  

The present study aimed to evaluate the expression of CD80 and CD18 in subpopulations of peripheral blood leukocytes and oxidative kidney damage in rats with nephrotic syndrome (NS) induced by doxorubicin (Dox) in comparison to control animals at different time points. Male adult Wistar rats were submitted to 24-hour urine and blood collection for biochemical and immunological analysis at 7, 14, 21, and 28 days after Dox injection. After euthanasia, the kidneys were removed for histological analysis and the evaluation of oxidative stress. The phenotypic characterization of leukocytes was performed using flow cytometry. Dox-injected animals exhibited increased CD18 expression in cytotoxic T lymphocytes, NK cells, and monocytes and high CD80 expression in monocytes. Kidney oxidative damage was positively correlated with CD80 expression in monocytes and serum levels of creatinine. These results suggest that phagocytic and cytotoxic cells are preferentially recruited to the tissue injury site, which may contribute to kidney dysfunction in this animal model of NS. The blockade of integrin and costimulatory molecules may provide new therapeutic opportunities for NS.


2017 ◽  
Vol 45 (08) ◽  
pp. 1613-1629 ◽  
Author(s):  
Yan-Jiao Xu ◽  
Zao-Qin Yu ◽  
Cheng-Liang Zhang ◽  
Xi-Ping Li ◽  
Cheng-Yang Feng ◽  
...  

The present study was designed to assess the effects and potential mechanisms of ginsenosides on 17[Formula: see text]-ethynyelstradiol (EE)-induced intrahepatic cholestasis (IC). Ginsenoside at doses of 30, 100, 300[Formula: see text]mg/kg body weight was intragastrically (i.g.) given to rats for 5 days to examine the effect on EE-induced IC. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bile acid (TBA) were measured. Hepatic malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined. Protein expression of proinflammatory cytokines TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] was analyzed by immunohistochemistry and Western blot. Results indicated that ginsenosides remarkably prevented EE-induced increase in the serum levels of AST, ALT, ALP and TBA. Moreover, the elevation of hepatic MDA content induced by EE was significantly reduced, while hepatic SOD activities were significantly increased when treated with ginsenosides. Histopathology of the liver tissue showed that pathological injuries were relieved after treatment with ginsenosides. In addition, treatment with ginsenosides could significantly downregulate the protein expression of TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] compared with EE group. These findings indicate that ginsenosides exert the hepatoprotective effect on EE-induced intrahepatic cholestasis in rats, and this protection might be attributed to the attenuation of oxidative stress and inflammation.


2021 ◽  
Vol 14 (3) ◽  
pp. e240288
Author(s):  
Gabriela F Santos ◽  
Paul Ellis ◽  
Daniela Farrugia ◽  
Alice M Turner

We report a 64-year-old caucasian woman diagnosed with membranous nephropathy secondary to alpha-1 antitrypsin deficiency (AATD). AATD is a rare autosomal codominant genetic disorder. Its clinical manifestations are mostly observed in the lungs, with early-onset emphysema. Nephropathy due to AATD is still very rare and only a few cohort studies have been reported. It has been recognised that alpha-1 antitrypsin has a protective role in the kidneys which enhances the possibility of development of kidney failure, such as nephrotic syndrome, in cases of AATD. Further clinical investigation is needed to understand the relationship between the development of nephropathy, namely membranous nephropathy, and AATD.


2021 ◽  
Author(s):  
Carolyn A. Lacey ◽  
Bárbara Ponzilacqua-Silva ◽  
Catherine A. Chambers ◽  
Alexis S. Dadelahi ◽  
Jerod A. Skyberg

Brucellosis is one of the most common global zoonoses and is caused by facultative intracellular bacteria of the genus Brucella . Numerous studies have found that MyD88 signaling contributes to protection against Brucella , however the underlying mechanism has not been entirely defined. Here we show that MyD88 signaling in hematopoietic cells contributes both to inflammation and to control of Brucella melitensis infection in vivo . While the protective role of MyD88 in Brucella infection has often been attributed to promotion of IFN-γ production, we found that MyD88 signaling restricts host colonization by B. melitensis even in the absence of IFN-γ. In vitro , we show that MyD88 promotes macrophage glycolysis in response to B. melitensis . Interestingly, a B. melitensis mutant lacking the glucose transporter, GluP, was more highly attenuated in MyD88 -/- than in WT mice, suggesting MyD88 deficiency results in an increased availability of glucose in vivo which Brucella can exploit via GluP. Metabolite profiling of macrophages identified several metabolites regulated by MyD88 in response to B. melitensis , including itaconate. Subsequently, we found that itaconate has antibacterial effects against Brucella and also regulates the production of pro-inflammatory cytokines in B. melitensis -infected macrophages. Mice lacking the ability to produce itaconate were also more susceptible to B. melitensis in vivo . Collectively, our findings indicate that MyD88-dependent changes in host metabolism contribute to control of Brucella infection.


Sign in / Sign up

Export Citation Format

Share Document