scholarly journals Immunomodulatory Properties of HLA-G in Infectious Diseases

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Laurence Amiot ◽  
Nicolas Vu ◽  
Michel Samson

HLA-G is a nonclassical major histocompatibility complex molecule first described at the maternal-fetal interface, on extravillous cytotrophoblasts. Its expression is restricted to some tissues in normal conditions but increases strongly in pathological conditions. The expression of this molecule has been studied in detail in cancers and is now also beginning to be described in infectious diseases. The relevance of studies on HLA-G expression lies in the well known inhibitory effect of this molecule on all cell types involved in innate and adaptive immunity, favoring escape from immune control. In this review, we summarize the features of HLA-G expression by type of infections (i.e, bacterial, viral, or parasitic) detailing the state of knowledge for each pathogenic agent. The polymorphism, the interference of viral proteins with HLA-G intracellular trafficking, and various cytokines have been described to modulate HLA-G expression during infections. We also discuss the cellular source of HLA-G, according to the type of infection and the potential role of HLA-G. New therapeutic approaches based on synthetic HLA-G-derived proteins or antibodies are emerging in mouse models of cancer or transplantation, and these new therapeutic tools may eventually prove useful for the treatment of infectious diseases.

Author(s):  
Almut Schulze ◽  
Karim Bensaad ◽  
Adrian L. Harris

Abnormalities in cancer metabolism have been noted since Warburg first described the phenomenon of glycolysis in normoxic conditions. This chapter reviews the major pathways in metabolism known to be modified in cancer, including glycolysis and the Krebs cycle, the pentose shunt, and new data implicating the role of different metabolic adaptations, including oncometabolism. It highlights the genetic changes that effect metabolism including many of the commonly occurring oncogenes but also rare mutations that specifically target metabolism. Nutrient and oxygen limitation and proliferation create the microenvironmental selective stress for modifications in hypoxic metabolism, but also affect other cell types such as endothelial cells and macrophages. This range of changes provides many new therapeutic approaches. It also describes the potential value of targeting these adaptations and approaches to monitoring in vivo effects in patients to monitor therapeutic activity.


Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 44
Author(s):  
Lamin B. Cham ◽  
Tom Adomati ◽  
Fanghui Li ◽  
Murtaza Ali ◽  
Karl S. Lang

The integrin associated protein (CD47) is a widely and moderately expressed glycoprotein in all healthy cells. Cancer cells are known to induce increased CD47 expression. Similar to cancer cells, all immune cells can upregulate their CD47 surface expression during infection. The CD47-SIRPa interaction induces an inhibitory effect on macrophages and dendritic cells (dendritic cells) while CD47-thrombospondin-signaling inhibits T cells. Therefore, the disruption of the CD47 interaction can mediate several biologic functions. Upon the blockade and knockout of CD47 reveals an immunosuppressive effect of CD47 during LCMV, influenza virus, HIV-1, mycobacterium tuberculosis, plasmodium and other bacterial pneumonia infections. In our recent study we shows that the blockade of CD47 using the anti-CD47 antibody increases the activation and effector function of macrophages, dendritic cells and T cells during viral infection. By enhancing both innate and adaptive immunity, CD47 blocking antibody promotes antiviral effect. Due to its broad mode of action, the immune-stimulatory effect derived from this antibody could be applicable in nonresolving and (re)emerging infections. The anti-CD47 antibody is currently under clinical trial for the treatment of cancer and could also have amenable therapeutic potential against infectious diseases. This review highlights the immunotherapeutic targeted role of CD47 in the infectious disease realm.


2021 ◽  
Author(s):  
Congjian Shi ◽  
Hongqin Yang ◽  
Zhengchao Wang ◽  
Zhenghong Zhang

Extracellular vesicles (EVs) are a heterogeneous group of endogenous nanoscale vesicles that are secreted by various cell types. Based on their biogenesis and size distribution, EVs can be broadly classified as exosomes and microvesicles. Exosomes are enveloped by lipid bilayers with a size of 30–150 nm in diameter, which contain diverse biomolecules, including lipids, proteins and nucleic acids. Exosomes transport their bioactive cargoes from original cells to recipient cells, thus play crucial roles in mediating intercellular communication. Breast cancer is the most common malignancy among women and remains a major health problem worldwide, diagnostic strategies and therapies aimed at breast cancer are still limited. Growing evidence shows that exosomes are involved in the pathogenesis of breast cancer, including tumorigenesis, invasion and metastasis. Here, we provide a straightforward overview of exosomes and highlight the role of exosomes in the pathogenesis of breast cancer, moreover, we discuss the potential application of exosomes as biomarkers and therapeutic tools in breast cancer diagnostics and therapeutics.


2020 ◽  
Vol 21 (19) ◽  
pp. 7371
Author(s):  
Maria Peleli ◽  
Aristidis Moustakas ◽  
Andreas Papapetropoulos

Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC–TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC–TC interaction.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 636
Author(s):  
Yoojin Seo ◽  
Tae-Hoon Shin ◽  
Ji-Su Ahn ◽  
Su-Jeong Oh ◽  
Ye Young Shin ◽  
...  

Mesenchymal stromal cells (MSCs) from various sources exhibit different potential for stemness and therapeutic abilities. Recently, we reported a unique MSCs from human palatine tonsil (TMSCs) and their superior proliferation capacity compared to MSCs from other sources. However, unique characteristics of each MSC are not yet precisely elucidated. We investigated the role of stanniocalcin-1 (STC1), an anti-oxidative hormone, in the functions of TMSCs. We found that STC1 was highly expressed in TMSC compared with MSCs from bone marrow or adipose tissue. The proliferation, senescence and differentiation of TMSCs were assessed after the inhibition of STC1 expression. STC1 inhibition resulted in a significant decrease in the proliferation of TMSCs and did not affect the differentiation potential. To reveal the anti-oxidative ability of STC1 in TMSCs themselves or against other cell types, the generation of mitochondrial reactive oxygen species (ROS) in TMSC or ROS-mediated production of interleukin (IL)-1β from macrophage-like cells were detected. Interestingly, the basal level of ROS generation in TMSCs was significantly elevated after STC1 inhibition. Moreover, down-regulation of STC1 impaired the inhibitory effect of TMSCs on IL-1β production in macrophages. Taken together, these findings indicate that STC1 is highly expressed in TMSCs and plays a critical role in proliferating and ROS-regulatory abilities.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1467
Author(s):  
Shweta Sahni ◽  
Partha Chattopadhyay ◽  
Kriti Khare ◽  
Rajesh Pandey

Since the time when detection of gene expression in single cells by microarrays to the Next Generation Sequencing (NGS) enabled Single Cell Genomics (SCG), it has played a pivotal role to understand and elucidate the functional role of cellular heterogeneity. Along this journey to becoming a key player in the capture of the individuality of cells, SCG overcame many milestones, including scale, speed, sensitivity and sample costs (4S). There have been many important experimental and computational innovations in the efficient analysis and interpretation of SCG data. The increasing role of AI in SCG data analysis has further enhanced its applicability in building models for clinical intervention. Furthermore, SCG has been instrumental in the delineation of the role of cellular heterogeneity in specific diseases, including cancer and infectious diseases. The understanding of the role of differential immune responses in driving coronavirus disease-2019 (COVID-19) disease severity and clinical outcomes has been greatly aided by SCG. With many variants of concern (VOC) in sight, it would be of great importance to further understand the immune response specificity vis-a-vis the immune cell repertoire, the identification of novel cell types, and antibody response. Given the potential of SCG to play an integral part in the multi-omics approach to the study of the host–pathogen interaction and its outcomes, our review attempts to highlight its strengths, its implications for infectious disease biology, and its current limitations. We conclude that the application of SCG would be a critical step towards future pandemic preparedness.


Author(s):  
W.T. Gunning ◽  
M.R. Marino ◽  
M.S. Babcock ◽  
G.D. Stoner

The role of calcium in modulating cellular replication and differentiation has been described for various cell types. In the present study, the effects of Ca++ on the growth and differentiation of cultured rat esophageal epithelial cells was investigated.Epithelial cells were isolated from esophagi taken from 8 week-old male CDF rats by the enzymatic dissociation method of Kaighn. The cells were cultured in PFMR-4 medium supplemented with 0.25 mg/ml dialyzed fetal bovine serum, 5 ng/ml epidermal growth factor, 10-6 M hydrocortisone 10-6 M phosphoethanolamine, 10-6 M ethanolamine, 5 pg/ml insulin, 5 ng/ml transferrin, 10 ng/ml cholera toxin and 50 ng/ml garamycin at 36.5°C in a humidified atmosphere of 3% CO2 in air. At weekly intervals, the cells were subcultured with a solution containing 1% polyvinylpyrrolidone, 0.01% EGTA, and 0.05% trypsin. After various passages, the replication rate of the cells in PFMR-4 medium containing from 10-6 M to 10-3 M Ca++ was determined using a clonal growth assay.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Sign in / Sign up

Export Citation Format

Share Document