scholarly journals A Novel Complementary Method for the Point-Scan Nondestructive Tests Based on Lamb Waves

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Rahim Gorgin ◽  
Zhanjun Wu ◽  
Yuebin Zheng

This study presents a novel area-scan damage identification method based on Lamb waves which can be used as a complementary method for point-scan nondestructive techniques. The proposed technique is able to identify the most probable locations of damages prior to point-scan test which lead to decreasing the time and cost of inspection. The test-piece surface was partitioned with some smaller areas and the damage probability presence of each area was evaluated.A0mode of Lamb wave was generated and collected using a mobile handmade transducer set at each area. Subsequently, a damage presence probability index (DPPI) based on the energy of captured responses was defined for each area. The area with the highest DPPI value highlights the most probable locations of damages in test-piece. Point-scan nondestructive methods can then be used once these areas are found to identify the damage in detail. The approach was validated by predicting the most probable locations of representative damages including through-thickness hole and crack in aluminum plates. The obtained experimental results demonstrated the high potential of developed method in defining the most probable locations of damages in structures.

2012 ◽  
Vol 622-623 ◽  
pp. 1389-1395
Author(s):  
R. Nishanth ◽  
K. Lingadurai ◽  
V. Malolan ◽  
Gowrishankar Wuriti ◽  
M.R.M. Babu

SHM is defined as “an emerging technology that can be defined as continuous, autonomous, real time, in-service monitoring of the physical condition of a structure by means of embedded or attached sensors with minimum manual intervention” .SHM provides the ability of a system to detect adverse changes within a system’s structure to enhance reliability and reduce maintenance costs. There are different Non-Destructive techniques like acoustic emission, ultrasonic, acousto-ultrasonic, guided ultrasonic waves or Lamb waves which are nowadays investigated for the development of an efficient and user-friendly damage identification system. This paper deals with the latter which is based on Lamb wave propagation. It has been developed especially for distinguishing different kinds of damages. The Lamb wave-based active SHM method uses piezoelectric (PZT) sensors to transmit and receive Lamb waves in a thin Aluminum plate. The Lamb wave modes (AO &SO) travel into the structure and are reflected by the structural boundaries, discontinuities, and damage. By studying their propagation and reflection, the presence of defect in the structure is determined. Laboratory level experiments have been carried out on thin Aluminum plates with angular, horizontal and vertical defect. The obtained waveform is filtered to avoid unwanted noise & disturbances using Savitzky-Golay filtering. The filtered waveforms are compared to differentiate the defects. Short Time Fourier Transform has been carried out on the acquired waveform. This study provides significant insight into the problem of identifying localized damages in the structure using PZT and dispersion of signal after they interact with different types of damage. Those small defects like the horizontal one that may be nearly missed in time domain analysis can also be clearly identified in the STFT analysis. Moreover the occurrence of So mode is also clearly seen. Thus, Lamb waves generated by PZT sensors and time-frequency analysis techniques could be used effectively for damage detection in aluminum plate. This study has given a complete idea of the working and the basic requirements of SHM system.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2745 ◽  
Author(s):  
Ruihua Li ◽  
Hao Li ◽  
Bo Hu

Large generators are the principal pieces of equipment in power systems, and their operation reliability critically depends on the stator insulation. Damages in stator insulation will gradually lead to the failure and breakdown of generator. Due to the advantages of Lamb waves in Structural health monitoring (SHM), in this study, a distributed piezoelectric (PZT) sensor system and hybrid features of the Lamb waves are introduced to identify stator insulation damage of large generator. A hierarchical probability damage-imaging (PDI) algorithm is proposed to tackle the material inhomogeneity and anisotropy of the stator insulation. The proposed method includes three steps: global detection using correlation coefficients, local detection using Time of flight (ToF) along with the amplitude of damage-scattered Lamb wave, and final images fusion. Wavelet Transform was used to extract the ToF of Lamb wave in terms of the time-frequency domain. Finite Element Modeling (FEM) simulation and experimental work were carried out to identify four typical stator insulation damages for validation, including inner void, inner delamination, puncture, and crack. Results show that the proposed method can precisely identify the location of stator insulation damage, and the reconstruction image can be used to identify the size of stator insulation damage.


2014 ◽  
Vol 1014 ◽  
pp. 3-8
Author(s):  
Zai Lin Yang ◽  
Hamada M. Elgamal ◽  
Jian Wei Zhang

With advantages including capability of propagation over a significant distance and high sensitivity to abnormalities and inhomogeneity near the wave propagation path, Lamb waves can be energised to disseminate in a structure and any changes in material properties or structural geometry created by a discontinuity, boundary or structural damage can be identified by examining the scattered wave signals. This paper presents an overview of the Lamb-wave-based damage identification in laminated composite plates including the formulation of lamb waves in an isotropic plate.


Author(s):  
Xi Lu ◽  
Fucai Li ◽  
Guang Meng ◽  
Lin Ye ◽  
Ye Lu

Structural health monitoring (SHM) plays a significant role in terms of fatigue life and damage accumulation prognostics. SHM for structures with complex geometry are much more practical in engineering applications. In this paper, complex aluminium alloy structures with “U” shape section were evaluated in terms of both finite element method (FEM)- and experiment-based Lamb wave analysis for the purpose of damage detection and identification. In the FEM-based analysis, three-dimensional finite element model was established to simulate the propagation behavior of Lamb wave in the structures. On the other hand, in the experiments, piezoelectric (PZT) wafers, functioning as both actuator and sensor, were used to generate Lamb waves propagating in the structures and collect the Lamb wave signals from the complex structures. Quantitative relationship between crack location and the reflection coefficient was constructed by taking advantage of continuous wavelet transform (CWT) and Hilbert transform (HT), which are based on the collected Lamb wave signals. Furthermore, the differences between simulated and experimental results in respect of crack severity evaluation and the reasons were discussed.


2020 ◽  
Vol 10 (10) ◽  
pp. 3491 ◽  
Author(s):  
Yinghong Zhang ◽  
Zhenghua Qian ◽  
Bin Wang

The multimode and dispersion characteristics of Lamb waves make them difficult to apply to nondestructive evaluation. This paper presents a paired configuration of a meander-line coil electromagnetic acoustic transducer (EMAT) to generate a single-mode symmetric and antisymmetric Lamb wave in aluminum plates. In the paired structure, the bias magnetic field of the EMAT that generates symmetric mode Lamb waves is perpendicular to the plate surface, while the bias magnetic field of the EMAT that generates antisymmetric Lamb waves is parallel to the plate surface. The symmetric and antisymmetric exciting forces generated by these two EMATs are consistent with the dispersion equations of single symmetric and antisymmetric Lamb wave modes, respectively. The numerical simulations and experiments verified that the presented paired configurations of meander-line coil EMATs can effectively control the generation of single-mode Lamb waves at low frequencies.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1633-1651 ◽  
Author(s):  
Jian Cai ◽  
Xiaopeng Wang ◽  
Zhiquan Zhou

In practical structural health monitoring with Lamb waves, the signal spatial resolution is usually restricted by not only dispersion but also the space duration of excitation waveforms, that is, the initial spatial resolution for the signals before traveling. As a result, the final resolution and accuracy of damage identification could be badly impaired. To overcome this problem, a signal domain transform method is presented in this article. In signal domain transform, the original dispersive Lamb wave signals are transformed from the time to distance domains, with the time–distance scaling on the excitation waveforms particularly modified. Then, both dispersion compensation and initial spatial resolution enhancement can be actualized to efficiently improve the signal spatial resolution. Considering the practical situation that the structural property parameters could be unavailable to theoretically derive the requisite wavenumber relations, signal domain transform with synthetically measured relative wavenumber curves is further explored. After the frequency domain representation and spatial resolution of Lamb wave signals are basically analyzed, the principle and numerical realization of signal domain transform are investigated. Hereafter, the synthetic measurement of relative wavenumber curves for signal domain transform is discussed and preliminarily validated in an aluminum plate. Finally, signal domain transform is applied for high-resolution imaging of adjacent multiple damages. The efficiency of signal domain transform and signal domain transform–based imaging methods has been well demonstrated by the experimental study on a glass fiber–reinforced composite plate with unknown material parameters.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zijian Wang ◽  
Pizhong Qiao ◽  
Binkai Shi

Lamb waves have shown promising advantages for damage identification in thin-walled structures. Multiple modes of Lamb wave provide diverse sensitivities to different types of damage. To sufficiently utilize damage-related wave features, damage indices were developed by using hybrid Lamb wave modes from Hilbert-Huang spectra. Damage indices were defined as surface integrals of Hilbert-Huang spectra on featured regions determined by time and frequency windowing. The time windowing was performed according to individual propagation velocity of different Lamb wave mode, while the frequency windowing was performed according to the frequency of excitation. By summing damage indices for all transmitter-receiver pairs, pixels were calculated to reconstruct a damage map to characterize the degree of damage at each location on structure. Both numerical and experimental validations were conducted to identify a nonpenetrating damage. The results demonstrated that the proposed damage indices using hybrid Lamb wave modes are more sensitive and robust than the one using single Lamb wave mode.


2007 ◽  
Vol 334-335 ◽  
pp. 637-640
Author(s):  
Chun Hui Yang ◽  
Zhong Qing Su ◽  
Lin Ye ◽  
Ye Lu ◽  
Michael Bannister

Stringer-stiffened plate-like structure is a typical engineering structure and its structural integrity is critical. A guided Lamb wave-based damage identification scheme and an online structural health monitoring (SHM) system with an integrated PZT-sensor network were developed. In the previous studies, the specimens were relatively simple. In this paper, the abovementioned method was extended to the stiffened plate-like structure—a flat plate reinforced by stringer. FE dynamic simulation was applied to investigate the Lamb wave propagation characteristics due to the existence of stringer with the consideration of its material and geometric configurations.


Author(s):  
Zhaoyun Ma ◽  
Lingyu Yu

Lamb waves have been widely used for damage detection on plate-like structures. However, there are still considerable interests on quantifying damage with complex profile. In this article, quantification of complex damage in plate-like structures using a network of actuators and time-space Lamb wavefield is investigated. The actuator network inspection system is implemented with multiple PZT transducers for Lamb wave actuation in round robin pattern and scanning laser Doppler vibrometer for wavefield sensing. The PZT network is arranged in a way that the target area is fully enclosed and Lamb waves come to the damage from all directions. Waves induced by the damage are subsequently obtained through frequency-wavenumber filtering, using the experimentally acquired dispersion curves presented in the paper. The filtered waves from all wave actuators are then used to generate a synthetic image of the damage being inspected. Two cases of complex damage are evaluated on aluminum plates, mass loss with triangular profile and mass addition with a three-letter cluster profile. Our results show that the damages are not only detected but also their profiles are clearly outlined in the images. We believe the subject methods provide improved evaluation of damage profile for Lamb wavefield based damage quantification.


2011 ◽  
Vol 83 ◽  
pp. 13-18 ◽  
Author(s):  
Yu Liu ◽  
Zheng Li ◽  
Ke Zhuang Gong ◽  
Xian Yue Su

This paper describes a quantitative damage identification method for CF/EP composite laminates based on Lamb waves excited by distributed PZT wafers. The fundamental symmetric mode S0 is considered to detect defects (hole) in the plate. The Morlet wavelet and the cross-correlation analysis are introduced as signal processing tools for determining the time-of-flight (ToF) of Lamb wave. Considering the difference of Lamb wave velocities in different directions in a composite plate, the relationship of Lamb wave velocity in a unidirectional fibre reinforced laminate is studied and validated experimentally and numerically. In addition, a defect identification approach is revealed based on a regular arrangement of PZT wafers. Then, on the basis of the relationship of the wave velocity and the ToF, the location of a hole is identified by proposed method. Results demonstrate that the method is feasible in quantitative diagnosis of composite structures.


Sign in / Sign up

Export Citation Format

Share Document