scholarly journals Effect of Nano ZnO on the Optical Properties of Poly(vinyl chloride) Films

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wasan Al-Taa’y ◽  
Mohammed Abdul Nabi ◽  
Rahimi M. Yusop ◽  
Emad Yousif ◽  
Bashar Mudhaffar Abdullah ◽  
...  

Optical properties of pure and doped poly(vinyl chloride) (PVC) films, prepared by using casting technique, with different nanosize zinc oxide (ZnO) concentrations (1–20) wt% have been studied. Parameters such as extinction coefficient, refractive index, real and imaginary parts, Urbach energy, optical conductivity, infinitely high frequency dielectric constant, and average refractive index were studied by using the absorbance and transmittance measurement from computerized UV-visible spectrophotometer (Shimadzu UV-1601 PC) in the spectral range 200–800 nm. This study reveals that the optical properties of PVC are affected by the doping of ZnO where the absorption increases and transmission decreases as ZnO concentration increases. The extinction coefficient, refractive index, real and imaginary parts, infinitely high frequency dielectric constant, and average refractive index values were found to increase with increasing impurity percentage. The Urbach energy values are found to be decreasing with increasing ZnO concentration. The optical conductivity increased with photon energy after being doped and with the increase of ZnO concentration.


2011 ◽  
Vol 8 (4) ◽  
pp. 976-981
Author(s):  
Baghdad Science Journal

Thick films of poly(vinyl chloride)(PVC)& PVC doped with Zn(etx)2 salt complex have been prepared by cast method with fixed thickness almost (120±5) Microns. Optical studies were carried out in the wavelengths region(200-900)nm based on absorption & transmition measurement. Optical parameters such as absorption coefficient(?) ,refraction index(n) and extinction coefficient(K) were observed to be effected by adding the dopant.Electrical parameters such as real(?)& imaginary(?) part of dielectric constant were also calculated part of dielectric constant were also calculated from the optical parameters using Maxwell equation.



2010 ◽  
Vol 7 (1) ◽  
pp. 168-173
Author(s):  
Baghdad Science Journal

Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness increased.



2013 ◽  
Vol 10 (1) ◽  
pp. 56-63
Author(s):  
Baghdad Science Journal

Films of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .



2017 ◽  
Vol 28 (19) ◽  
pp. 14777-14786 ◽  
Author(s):  
Fahmi F. Muhammad ◽  
Mohd Yazid Yahya ◽  
Fakhra Aziz ◽  
Mariwan A. Rasheed ◽  
Khaulah Sulaiman


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tagreed K. Hamad ◽  
Rahimi M. Yusop ◽  
Wasan A. Al-Taa’y ◽  
Bashar Abdullah ◽  
Emad Yousif

The effect of continuous CO2laser radiation on the optical properties of pure polyvinyl chloride and doped of ZnO nanoparticles with two different concentrations (10, 15%) has been investigated. All samples were prepared using casting method at room temperature. Optical properties (absorption, transmission, absorption coefficient, extinction coefficient, refractive index, and optical conductivity) of all films after CO2laser irradiated have been studied as a function of the wavelength in the range (200–800) nm for three energies (300, 400 and 500 mJ). It has been found that the transmission, energy gap, and refractive index increase with increasing laser energy. The values of absorption, Urbach energy, absorption coefficient, extinction coefficient, and optical conductivity were decreased.



2021 ◽  
pp. 089270572110386
Author(s):  
Ali F Al-Shawabkeh ◽  
Ziad M Elimat ◽  
Khaleel N Abushgair

The goal of this study was to investigate the optical properties of the prepared polyvinyl chloride (PVC)/zinc oxide (ZnO) nanocomposite films. The PVC/ZnO nanocomposite films consist of the addition of different concentrations with both non-annealed ZnO nanoparticles and ZnO nanoparticles annealed at temperature of 700°C. The PVC/ZnO nanocomposite films by weight concentrations of (0 wt.%, 2.5 wt.%, 5 wt.% and 10 wt.%) have been prepared by the casting method. The optical absorbance and transmittance values of the composites films were measured in the wavelength range between (250 to 1100 nm) at room temperature by using the UV-1800 Shimadzu spectrophotometer. The optical properties (absorption coefficient, dielectric constant, refractive index, and optical conductivity) have been investigated by the ultraviolet (UV) spectrophotometer. The optical parameters (direct optical energy gap, excitation energy for electronic transitions, the dispersion energy, static refractive index, static dielectric constant, optical oscillator strengths, the moments of optical spectrum, linear optical susceptibility, third-order nonlinear optical susceptibility, nonlinear refractive index, high-frequency dielectric constant, the carrier concentration to the effective mass ratio, the long wavelength refractive index and the plasma frequency) were calculated. The results showed that the optical properties behavior of the PVC/ZnO nanocomposite films was found to be dependent on the ZnO concentration, and photon wavelength. In addition, the results of the study show that the optical parameters can be influenced by alter the concentration of the nonannealed and annealed a ZnO nanoparticle in the PVC polymer matrix.



2021 ◽  
Vol 900 ◽  
pp. 16-25
Author(s):  
Tabarak Mohammed Awad ◽  
May A.S. Mohammed

In this study, some optical properties were studied of the pure vinyl polyvinyl alcohol (PVA) nanopolymer (German origin). Under the influence of different temperatures and pressures of PVA. Where 25 samples were prepared for the purpose of conducting the research. Which studied the study of these samples was done by recording the absorbance and transmittance spectra of the wavelengths (200-900) nm. From them, absorbance, transmittance, reflectivity, absorption coefficient, refractive index, extinction coefficient, complex dielectric constant were calculated. At different temperatures (25,40, 80, 120, 160)°C. And with different pressures within the range (7.5,8,8.5,9,9.5) MPa. The results are that the permeability of the polymer (PVA) at different temperatures for each pressure decreases with increasing temperature, and that all other calculated optical properties increase with increasing temperature.



2018 ◽  
Vol 26 (10) ◽  
pp. 249-256
Author(s):  
Waleed Khalid Kadhim

In this paper I present the preparation of (Sb2o3) thin films using thermal evaporation in vacuum, procedure with different thickness  (100 ,150 ,200 ,and 250) nm, by using ( hot plate) from Molybdenum matter at temperature in ( 9000c) and the period of time (15mint) ,the prepared in a manner thermal evaporation in a vacuum and precipitated on glass bases, pure Antimony Trioxide (sb2o3 ) thin films with various condition have been successfully deposited by (T.E.V) on glass slide substrates. The substrates temperature of about 100oC and the vacuum of about 10-6 torr, to investigated oxidation of evaporated, measure spectra for prepared films in arrange of wavelength (250 – 1100 nm). The following optical properties have been calculated: the absorption coefficient, the forbidden (Eg) for direct and indirect transitions "absorbance, refractive index,  extinction coefficient, real and imaginary parts" of the dielectric constant.



2011 ◽  
Vol 8 (2) ◽  
pp. 561-565
Author(s):  
Baghdad Science Journal

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.



2019 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
M.M. El-Nahass ◽  
H.A.M. Ali

AbstractOptical properties of Si single crystals with different orientations (1 0 0) and (1 1 1) were investigated using spectrophotometric measurements in a spectral range of 200 nm to 2500 nm. The data of optical absorption revealed an indirect allowed transition with energy gap of 1.1 ± 0.025 eV. An anomalous dispersion in refractive index. The normal dispersion of the refractive index was discussed according to Wemple-DiDomenico single oscillator model. The oscillator energy Eo, dispersion energy Ed, high frequency dielectric constant ∈∞, lattice dielectric constant ∈L and electronic polarizability αe were estimated. The real ∈1 and imaginary ∈2 parts of dielectric constant were also determined.



Sign in / Sign up

Export Citation Format

Share Document