scholarly journals Identification and Characterization of the Grape WRKY Family

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Zhang ◽  
Jian can Feng

WRKY transcription factors have functions in plant growth and development and in response to biotic and abiotic stresses. Many studies have focused on functional identification of WRKY transcription factors, but little is known about the molecular phylogeny or global expression patterns of the complete WRKY family. In this study, we identified 80 WRKY proteins encoded in the grape genome. Based on the structural features of these proteins, the grapeWRKYgenes were classified into three groups (groups 1–3). Analysis ofWRKYgenes expression profiles indicated that 28WRKYgenes were differentially expressed in response to biotic stress caused by grape whiterot and/or salicylic acid (SA). In that 16WRKYgenes upregulated both by whiterot pathogenic bacteria and SA. The results indicated that 16 WRKY proteins participated in SA-dependent defense signal pathway. This study provides a basis for cloning genes with specific functions from grape.

2019 ◽  
Vol 20 (22) ◽  
pp. 5676 ◽  
Author(s):  
Haifeng Yan ◽  
Mingzhi Li ◽  
Yuping Xiong ◽  
Jianming Wu ◽  
Jaime A. Teixeira da Silva ◽  
...  

WRKY proteins are a large superfamily of transcription factors that are involved in diverse biological processes including development, as well as biotic and abiotic stress responses in plants. WRKY family proteins have been extensively characterized and analyzed in many plant species, including Arabidopsis, rice, and poplar. However, knowledge on WRKY transcription factors in Santalum album is scarce. Based on S. album genome and transcriptome data, 64 SaWRKY genes were identified in this study. A phylogenetic analysis based on the structures of WRKY protein sequences divided these genes into three major groups (I, II, III) together with WRKY protein sequences from Arabidopsis. Tissue-specific expression patterns showed that 37 SaWRKY genes were expressed in at least one of five tissues (leaves, roots, heartwood, sapwood, or the transition zone), while the remaining four genes weakly expressed in all of these tissues. Analysis of the expression profiles of the 42 SaWRKY genes after callus was initiated by salicylic acid (SA) and methyl jasmonate (MeJA) revealed that 25 and 24 SaWRKY genes, respectively, were significantly induced. The function of SaWRKY1, which was significantly up-regulated by SA and MeJA, was analyzed. SaWRKY1 was localized in the nucleus and its overexpression improved salt tolerance in transgenic Arabidopsis. Our study provides important information to further identify the functions of SaWRKY genes and to understand the roles of SaWRKY family genes involved in the development and in SA- and MeJA-mediated stress responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


Genome ◽  
2018 ◽  
Vol 61 (10) ◽  
pp. 713-723 ◽  
Author(s):  
Zhan Zhang ◽  
Chong Ren ◽  
Luming Zou ◽  
Yi Wang ◽  
Shaohua Li ◽  
...  

The plant GATA family is one of the most important transcription factors involved in light-responsive development, nitrogen metabolism, phytohormone signaling, and source/sink balance. However, the function of the GATA gene is less known in grape (Vitis vinifera L.). In this study, we comprehensively analyzed the GATA family in grape, particularly the phylogenetic evolution, duplication patterns, conserved motifs, gene structures, cis-elements, tissue expression patterns, and predicted function of VvGATA genes in response to abiotic stress. The potential roles of VvGATA genes in berry development were also investigated. The GATA transcription factors displayed expression diversity among different grape organs and tissues, and some of them showed preferential expression in a specific tissue. Heterotrophic cultured cells were used as model systems for the functional characterization of the VvGATA gene and study of its response to light and phytohormone. Results indicated that some VvGATA genes displayed differential responses to light and phytohormones, suggesting their role in light and hormone signaling pathways. A thorough analysis of GATA transcription factors in grape (V. vinifera L.) presented the characterization and functional prediction of VvGATA genes. The data presented here lay the foundation for further functional studies of grape GATA transcription factors.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1386
Author(s):  
Sheng Yao ◽  
Fan Wu ◽  
Qingqing Hao ◽  
Kongshu Ji

Pinus massoniana Lamb, an economically important conifer tree, is widely distributed in China. WRKY transcription factors (TFs) play important roles in plant growth and development, biological and abiotic stress. Nevertheless, there is little information about the WRKY genes in P. massoniana. By searching for conserved WRKY motifs in transcriptomic RNA sequencing data for P. massoniana, 31 sequences were identified as WRKY TFs. Then, phylogenetic and conserved motif analyses of the WRKY family in P. massoniana, Pinus taeda and Arabidopsis thaliana were used to classify WRKY genes. The expression patterns of six PmWRKY genes from different groups were determined using real-time quantitative PCR for 2-year-old P. massoniana seedings grown in their natural environment and challenged by phytohormones (salicylic acid, methyl jasmonate, or ethephon), abiotic stress (H2O2) and mechanical damage stress. As a result, the 31 PmWRKY genes identified were divided into three major groups and several subgroups based on structural and phylogenetic features. PmWRKY genes are regulated in response to abiotic stress and phytohormone treatment and may participate in signaling to improve plant stress resistance. Some PmWRKY genes behaved as predicted based on their homology with A. thaliana WRKY genes, but others showed divergent behavior. This systematic analysis lays the foundation for further identification of WRKY gene functions to aid further exploration of the functions and regulatory mechanisms of PmWRKY genes in biological and abiotic stress in P. massoniana.


2019 ◽  
Author(s):  
Haifeng Yan ◽  
Mingzhi Li ◽  
Yuping Xiong ◽  
Yueya Zhang ◽  
Hanzhi Liang ◽  
...  

Abstract Background: WRKY proteins are a large superfamily of transcription factors that are involved in diverse biological processes including development, as well as biotic and abiotic stress responses in plants. WRKY family proteins have been extensively characterized and analyzed in many plant species, including Arabidopsis , rice and poplar. However, knowledge on WRKY transcription factors in S antalum album is scarce. Results: Based on S . albu m genome and transcriptome data, 64 SaWRKY genes were identified in this study. A phylogenetic analysis based on the structures of WRKY protein sequences divided these genes into three major groups (I, II, III) together with WRKY protein sequences from Arabidopsis . Tissue-specific expression patterns showed that 37 SaWRKY genes were expressed in at least one of five tissues (leaves, roots, heartwood, sapwood, or the transition zone) while the remaining four genes were weakly expressed in all of these tissues. Analysis of the expression profiles of the 42 SaWRKY genes after callus was stimulated by salicylic acid (SA) and methyl jasmonate (MeJA) revealed that 34 and 19 SaWRKY genes, respectively were significantly induced. The function of SaWRKY1 , which was significantly up-regulated by SA and MeJA, was analyzed. SaWRKY1 was localized in the nucleus and its overexpression improved salt tolerance in transgenic Arabidopsis . Conclusions: Our study provides important information to further identify the functions of SaWRKY genes and to understand the roles of SaWRKY family genes involved in development and in SA- and MeJA-mediated stress responses.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9551
Author(s):  
Lidong Hao ◽  
Shubing Shi ◽  
Haibin Guo ◽  
Ming Li ◽  
Pan Hu ◽  
...  

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Huiping Zhu ◽  
Yangdong Wang ◽  
Hengfu Yin ◽  
Ming Gao ◽  
Qiyan Zhang ◽  
...  

Leucine-rich repeat receptor-like kinases (LRR-RLKs) make up the largest group of RLKs in plants and play important roles in many key biological processes such as pathogen response and signal transduction. To date, most studies on LRR-RLKs have been conducted on model plants. Here, we identified 236 and 230LRR-RLKsin two industrial oil-producing trees:Vernicia fordiiandVernicia montana, respectively. Sequence alignment analyses showed that the homology of the RLK domain (23.81%) was greater than that of the LRR domain (9.51%) among theVf/VmLRR-RLKs. The conserved motif of the LRR domain inVf/VmLRR-RLKsmatched well the known plant LRR consensus sequence but differed at the third last amino acid (W or L). Phylogenetic analysis revealed thatVf/VmLRR-RLKswere grouped into 16 subclades. We characterized the expression profiles ofVf/VmLRR-RLKsin various tissue types including root, leaf, petal, and kernel. Further investigation revealed thatVf/VmLRR-RLKorthologous genes mainly showed similar expression patterns in response to tree wilt disease, except 4 pairs ofVf/VmLRR-RLKsthat showed opposite expression trends. These results represent an extensive evaluation ofLRR-RLKsin two industrial oil trees and will be useful for further functional studies on these proteins.


Author(s):  
Perotti M F ◽  
Arce A L ◽  
R L Chan

Abstract Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors (TFs) and hormones that are crucial players regulating root plasticity. Multiple TF families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) TFs in root development. This family is divided into four subfamilies (I to IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip TFs in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several ones from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.


Sign in / Sign up

Export Citation Format

Share Document