scholarly journals Analysis of the Influence of Microcellular Injection Molding on the Environmental Impact of an Industrial Component

2014 ◽  
Vol 6 ◽  
pp. 793269 ◽  
Author(s):  
Daniel Elduque ◽  
Isabel Clavería ◽  
Ángel Fernández ◽  
Carlos Javierre ◽  
Carmelo Pina ◽  
...  

Microcellular injection molding is a process that offers numerous benefits due to the internal structure generated; thus, many applications are currently being developed in different fields, especially home appliances. In spite of the advantages, when changing the manufacturing process from conventional to microcellular injection molding, it is necessary to analyze its new mechanical properties and the environmental impact of the component. This paper presents a deep study of the environmental behavior of a manufactured component by both conventional and microcellular injection molding. Environmental impact will be evaluated performing a life cycle assessment. Functionality of the component will be also evaluated with samples obtained from manufactured components, to make sure that the mechanical requirements are fulfilled when using microcellular injection molding. For this purpose a special device has been developed to measure the flexural modulus. With a 16% weight reduction, the variation of flexural properties in the microcellular injected components is only 6.8%. Although the energy consumption of the microcellular injection process slightly increases, there is an overall reduction of the environmental burden of 14.9% in ReCiPe and 15% in carbon footprint. Therefore, MuCell technology can be considered as a green manufacturing technology for components working mainly under flexural load.

2015 ◽  
Vol 761 ◽  
pp. 52-56
Author(s):  
M.H. Norhidayah ◽  
Arep Hambali ◽  
M.Y. Yuhazri

The aim of this paper was the effects of different fiber size on tensile and flexural properties. Preparation of thermoset unsaturated polyester reinforced with particle Bertam (Eugeissona tristis) was done by hand layout method. Bertam/polyester composites containing Bertam fiber of different sizes, i.e., 15, 120 and 284 μm were prepared. For each composite, eight specimens were tested to evaluate the mechanical properties. It was found that composite reinforced with Bertam having the shortest fiber length, i.e, 15 μm showed the highest tensile and flexural modulus, which were 204.14 MPa and 1826.78 MPa, respectively.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1532-S1540
Author(s):  
Shibly Shadik Mir Md ◽  
Ming Yeng Chan ◽  
Seong Chun Koay

Issues pertaining to deforestation, environmental pollution and natural wastes are increasing day by day. These issues can be resolved by introducing a new composite material, in which natural waste is used as fibre and as a replacement of wood plastic composite. The different lengths (3, 6 and 9 cm) of corn husk fibre filled polyester composites were produced using the vacuum infusion method. Several mechanical properties of these polyester composites, such as tensile and flexural properties, were evaluated. The results revealed that both the tensile and flexural properties of polyester composites increased with increment of corn husk fibre length from 3 to 6 cm. However, the results decreased for 9 cm of fibre length filled composites. Similar trends were recorded after alkali treatment of the corn husk fibre filled polyester composites. The alkali treatment with sodium hydroxide had improved the tensile strength (33%), Young’s modulus (23%), elongation (14%), flexural strength (42%) and flexural modulus (8.5%) of the polyester/corn husk fibre composites with 6 cm of fibre length by enhancing the mechanical interlocking bonding between treated corn husk fibres and polyester.


2011 ◽  
Vol 230-232 ◽  
pp. 1332-1334
Author(s):  
Bao Jun Zhi

This paper presents the environmental impact of manufacturing in several important aspects. Resume green manufacturing is the only way to sustainable development and green manufacturing technology trends and prospects.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shahril Anuar Bahari ◽  
Warren J. Grigsby ◽  
Andreas Krause

Polyvinyl chloride (PVC)/bamboo composites have been prepared and assessed for their use in interior and exterior load-bearing applications. PVC composites were formed by compounding PVC with different bamboo particle sizes and loadings. The mechanical properties of these composites were determined at both ambient and elevated temperatures and after long-term water soaking. Analysis revealed that bamboo incorporation improved the PVC composite flexural modulus which was also observed with dynamic mechanical-thermal analysis on heating composites toca.70°C. Addition of 25% and 50% bamboo particles increases flexural modulus by 80% with dependency on whether fine (<75 μm) or coarse (<1 mm) particles were used. On water soaking to saturation, composites had water weight uptakes of 10%, with reduced flexural properties obtained for all water-soaked composites. Nonetheless, the results of this study show that PVC/bamboo composites achieve the minimum flexural performance of ASTM D 6662, indicating potential for their use in exterior applications.


2020 ◽  
Vol 993 ◽  
pp. 684-688
Author(s):  
Nian Liang Gu ◽  
Cai Xia Chu ◽  
Jun Nan Guo ◽  
He Yi Ge ◽  
Chao Sheng Jin

In this paper, the surface of carbon fiber (CF) was firstly modified by carbon nanotubes (CNTs) sizing agent, then the CF reinforced polypropylene (PP) composite was prepared by extrusion-injection process. The tensile and flexural properties of CF/PP were tested. CF-5CNTs/PP had the best mechanical properties. The microstructure of CF and CF/PP was characterized by SEM. The effect of the CNTs on the mechanical properties of CF/PP was discussed in detail.


2015 ◽  
Vol 816 ◽  
pp. 152-156
Author(s):  
Xin Ma ◽  
Xin Bo He ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Yong Li

2D Cf/SiC composites were prepared by precursor infiltration and pyrolysis (PIP) process with spreaded T700-12K plain weave carbon clothes as the reinforcement. The mechanical properties and microstructures were investigated. The composites are compact with few internal defects since the precursor could infiltrate the preform effectively. CVD-PyC interface modified the surface of T700 carbon fiber, a rough surface is helpful for the interfacial combination and the load transfer. For the Cf/PyC/SiC composites, the flexural strength and flexural modulus were 425±23.2 MPa and 36.3±3.1 GPa, respectively.


2007 ◽  
Vol 334-335 ◽  
pp. 829-832
Author(s):  
Joon Hyung Byun ◽  
Kyeong Sik Min ◽  
Yeun Ho Yu ◽  
Moon Kwang Um ◽  
Sang Kwan Lee

This study describes a method of good dispersion and alignment of VGCFs, and examines the effect of nanofiber content on the mechanical properties of nanocomposites. The dispersion of nanofibers was carried out by solution blending, mechanical mixing, and sonication. Levels of 4% – 31% volume content of VGCFs were mixed with polypropylene (PP) powder, and then were melt-mixed using a twin-screw extruder. For the further alignment of fibers, extruded rods were stacked in the mold cavity for the compression molding. In the case of 31% volume content, tensile modulus and strength improved by 100% and 40%, and the flexural modulus and strength increased by 120% and 25%, respectively. The shear modulus showed 65% increase, but the strength dropped sharply by 40%. In the transverse direction, the tensile, flexural, and shear strength decreased as more fibers were added. The matrix modification by maleic anhydride (MAPP) increased the tensile and flexural properties of VGCF/PP by 20% - 30% in the longitudinal direction, and 40% - 250% increase in the transverse direction. The fiber surface treatment by plasma improved tensile and flexural properties of untreated VGCF/PP (18 % vol) composites by 10% - 30% in the longitudinal direction, but strength in the transverse direction decreased by 30% - 40%.


2016 ◽  
Vol 53 (5) ◽  
pp. 491-502 ◽  
Author(s):  
Valentina Volpe ◽  
Roberto Pantani

Foam injection molding is a processing technology particularly interesting for biodegradable polymers, which present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. The addition of a physical blowing agent, besides decreasing the final part weight, reduces both the viscosity and the glass transition temperature of the polymer melt, allowing the processability of these materials at lower temperatures. In this work, structural foams of polylactic acid with nitrogen as physical blowing agent were obtained by foam injection molding. In particular, the effects of back pressure, namely the pressure imposed inside of the cylinder when the screw is returning back to prepare a new amount of material to be injected, and of the injection flow rate on foaming and mechanical properties of the molded parts was assessed. It was found that the samples molded adopting a higher injection flow rate are shorter than those injected at lower flow rate, and this result was ascribed to the large compressibility of the injected shot. As far as the mechanical properties of the foamed parts, it was found that the modulus decreases with decreasing density. However, the density reduction is not the only significant parameter, but also the morphology of the foams should be taken into account in order to justify the differences between tensile and flexural modulus.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
K. B. Prakash ◽  
Yahya Ali Fageehi ◽  
Rajasekaran Saminathan ◽  
P. Manoj Kumar ◽  
S. Saravanakumar ◽  
...  

There is more demand for natural fiber-reinforced composites in the energy sector, and their impact on the environment is almost zero. Natural fiber has plenty of advantages, such as easy recycling and degrading property, low density, and low price. Natural fiber’s thermal properties and flexural properties are less than conventional fiber. This work deals with the changes in the thermal properties and mechanical properties of S-glass reinforced with a sodium hydroxide-treated pineapple leaf (PALF) and banana stem fibers. Banana stem and pineapple leaf fibers (PALF) were used at various volume fractions, i.e., 30%, 40%, and 50%, and various fiber lengths of 20 cm, 30 cm, and 40 cm with S-glass, and their effects on the thermal and mechanical properties were studied, and their optimum values were found. It was evidenced that increasing the fiber volume and fiber length enhanced the flexural and thermal properties up to 40% of the fiber volume, and started to decrease at 50% of the fiber volume. The fiber length provides an affirmative effect on the flexural properties and a pessimistic effect on the thermal properties. The PALF S-glass combination of 40% fiber load and 40 cm fiber length provides maximum flexural strength, flexural modulus, storage modulus, and lowest loss modulus based on hybrid Taguchi grey relational optimization techniques. PALF S-glass hybrid composite has been found to have 7.80%, 3.44%, 1.17% higher flexural strength, flexural modulus, and loss modulus, respectively, and 15.74% lower storage modulus compared to banana S-glass hybrid composite.


Sign in / Sign up

Export Citation Format

Share Document