Structure and mechanical properties of polystyrene foams made through microcellular injection molding via control mechanisms of gas counter pressure and mold temperature

Author(s):  
Shia-Chung Chen ◽  
Won-Hsion Liao ◽  
Rean-Der Chien
Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Artur Kościuszko ◽  
Dawid Marciniak ◽  
Dariusz Sykutera

Dimensions of the injection-molded semi-crystalline materials (polymeric products) decrease with the time that elapses from their formation. The post-molding shrinkage is an effect of secondary crystallization; the increase in the degree of polymer crystallinity leads to an increase in stiffness and decrease in impact strength of the polymer material. The aim of this study was to assess the changes in the values of post-molding shrinkage of polypropylene produced by injection molding at two different temperatures of the mold (20 °C and 80 °C), and conditioned for 504 h at 23 °C. Subsequently, the samples were annealed for 24 h at 140 °C in order to conduct their accelerated aging. The results of shrinkage tests were related to the changes of mechanical properties that accompany the secondary crystallization. The degree of crystallinity of the conditioned samples was determined by means of density measurements and differential scanning calorimetry. It was found that the changes in the length of the moldings that took place after removal from the injection mold were accompanied by an increase of 20% in the modulus of elasticity, regardless of the conditions under which the samples were made. The differences in the shrinkage and mechanical properties of the samples resulting from mold temperature, as determined by tensile test, were removed by annealing. However, the samples made at two different injection mold temperature values still significantly differed in impact strength, the values of which were clearly higher for the annealed samples compared to the results determined for the samples immediately after the injection molding.


2012 ◽  
Vol 501 ◽  
pp. 294-299 ◽  
Author(s):  
Zhi Bian ◽  
Peng Cheng Xie ◽  
Yu Mei Ding ◽  
Wei Min Yang

This study was aimed at understanding how the process conditions affected the dimensional stability of glass fiber reinforced PP by microcellular injection molding. A design of experiments (DOE) was performed and plane test specimens were produced for the shrinkage and warpage analysis. Injection molding trials were performed by systematically adjusting six process parameters (i.e., Injection speed, Injection pressure, Shot temperature, SCF level, Mold temperature, and Cooling time). By analyzing the statistically significant main and two-factor interaction effects, the results showed that the supercritical fluid (SCF) level and the injection speed affected the shrinkage and warpage of microcellular injection molded parts the most.


Author(s):  
Catalin Fetecau ◽  
Felicia Stan ◽  
Daniel Dobrea ◽  
Dan Catalin Birsan

In this paper, we investigated the effect of injection molding parameters such as melt temperature, mold temperature, injection speed and holding pressure on the mechanical properties of low density polyethylene reinforced with 2.5 wt% multi-walled carbon nanotubes. The Taguchi methodology with four factors and two levels was used for the design of the injection molding experiments. The mechanical properties were evaluated by tensile tests in the flow direction at room temperature (23 °C) at crosshead speeds of 1 and 5 mm/min. It was found that the mechanical properties can be modified by manipulating the injection molding parameters. The Young’s modulus of the LDPE-MWNTs composite decreased as the melt temperature increased, while mold temperature, injection molding speed and holding pressure have a moderate influence on the Young’s modulus.


2015 ◽  
Vol 805 ◽  
pp. 131-138
Author(s):  
Martin Löhner ◽  
Dietmar Drummer

Reaction injection molding is a plastic processing method to produce net shape parts using reactive systems. By integrating semi-finished products as inserts, complex multi-layer parts can be generated in highly integrative and energy efficient processes. The material by far mostly used is polyurethane, a polymer which results from the reaction of isocyanate and polyol. By adding blowing agents, like for example water, to the polyol component, foamed parts can be realized. In contrast to thermoplastic injection molding a chemical reaction takes part during molding within the cavity. Therefore the processing parameters have a significant effect on this chemical reaction and on the properties of the finished part.In this work the influences of different processing parameters like for example mold temperature and injection volume on the resulting foam structure are investigated for reaction injection foam molding. Therefore multi-layer parts based on polyurethane materials (thermoplastic and reactive) were molded varying relevant processing parameters. The foaming took place within an open cavity. The resulting foam structures were characterized using scanning electron microscopy (SEM). Additional the multi-layer parts were characterized mechanically to reveal the resulting effects on the mechanical properties of parts containing a foamed reactive polyurethane component.


2014 ◽  
Vol 6 ◽  
pp. 793269 ◽  
Author(s):  
Daniel Elduque ◽  
Isabel Clavería ◽  
Ángel Fernández ◽  
Carlos Javierre ◽  
Carmelo Pina ◽  
...  

Microcellular injection molding is a process that offers numerous benefits due to the internal structure generated; thus, many applications are currently being developed in different fields, especially home appliances. In spite of the advantages, when changing the manufacturing process from conventional to microcellular injection molding, it is necessary to analyze its new mechanical properties and the environmental impact of the component. This paper presents a deep study of the environmental behavior of a manufactured component by both conventional and microcellular injection molding. Environmental impact will be evaluated performing a life cycle assessment. Functionality of the component will be also evaluated with samples obtained from manufactured components, to make sure that the mechanical requirements are fulfilled when using microcellular injection molding. For this purpose a special device has been developed to measure the flexural modulus. With a 16% weight reduction, the variation of flexural properties in the microcellular injected components is only 6.8%. Although the energy consumption of the microcellular injection process slightly increases, there is an overall reduction of the environmental burden of 14.9% in ReCiPe and 15% in carbon footprint. Therefore, MuCell technology can be considered as a green manufacturing technology for components working mainly under flexural load.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1160 ◽  
Author(s):  
Huajie Mao ◽  
Bo He ◽  
Wei Guo ◽  
Lin Hua ◽  
Qing Yang

Using supercritical nitrogen as the physical foaming agent, microcellular polypropylene (PP) nanocomposites were prepared in microcellular injection molding. The main purpose of this work is to study effects of content of nano-CaCO3 on the crystallization, mechanical properties, and cell structure of PP nanocomposites in microcellular injection molding. The results show that adding nano-CaCO3 to PP could improve its mechanical properties and cell structure. The thermal stability and crystallinity enhances with increase of nano-CaCO3. As a bubble nucleating agent, adding nano-CaCO3 to PP improves the cell structure in both the parallel sections and vertical sections. The mechanical properties increase first and then decrease with increase of nano-CaCO3. The mechanical properties are affected by the cell structure, as well. The mechanical properties and cell structure are optimum when the content of nano-CaCO3 is 6 wt %.


2014 ◽  
Vol 34 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Yottha Srithep ◽  
Lih-Sheng Turng

Abstract Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Due to thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding chain extender (CE) and nanoclay to RPET were investigated. Melt blending of RPET with CE was performed in a thermokinetic mixer (K-mixer). The blended materials were then prepared via solid and microcellular injection molding processes. The effects of CE loading levels and the simultaneous addition of nanoclay on the thermal and mechanical properties and cell morphology of the microcellular components were noted. The addition of 1.3% CE enhanced the tensile properties and viscosity of RPET. The higher amount of CE (at 3%) enhanced the viscosity, but the margin of improvement in mechanical properties diminished. While the solid RPET and CE blends were fairly ductile, the samples with nanoclay and all microcellular specimens showed brittle fractural behavior. Finally, nanoclay and the increase of CE content decreased the average cell size and enlarged the cell density of the microcellular samples.


2018 ◽  
Vol 37 (1) ◽  
pp. 1-20
Author(s):  
Hrishikesh Kharbas ◽  
Thomas Ellingham ◽  
Lih-Sheng Turng

Without modifying existing part and mold designs, the conventional microcellular injection molding (MIM) process can typically save about 5–10% material without encountering problems such as incomplete filling, excessive shrinkage, or deteriorating microstructure and mechanical properties. In this study core retraction was used in combination with the MIM process to produce thick polypropylene (PP) parts (up to 7.6 mm thick) with high density reductions of 30% and 55%. The cavity volume was modified by changing the retraction distance, which enabled control of density reductions. The lowest densities were achieved with this core retraction-aided microcellular injection molding (CR-MIM) process, the results of which could not have been achieved by the conventional MIM process alone. The effects of delay time in core retraction and weight reduction on the microstructure of the core and skin layers were investigated. It was shown that the CR-MIM process yielded better microstructure and tensile properties than the conventional MIM process. Use of core retraction also yielded more consistent densities and tensile properties throughout the length of the foamed parts.


Sign in / Sign up

Export Citation Format

Share Document