scholarly journals Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Liu ◽  
Bin Wang ◽  
Yang Deng ◽  
Biao Cui ◽  
Jie Wang ◽  
...  

Removal performance of arsenic in water by a novel magnetic chitosan nanoparticle (MCNP) with a diameter of about 10 nm, including adsorption kinetics, adsorption isotherm, main influencing factors, and regeneration effects, was investigated. In addition, the effective separation way for MCNP particles and the new application mode were developed to prompt the application of MCNP. The results showed that MCNP exhibited excellent ability to remove As(V) and As(III) from water in a wide range of initial concentrations, MCNP removed arsenic rapidly with more than 95% of arsenic adsorbed in initial 15 min, and the whole process fitted well to the pseudo-second-order model. The Langmuir model fits the equilibrium data better than the Freundlich isotherm model and the maximum adsorption capacities of As(V) and As(III) were 65.5 mg/g and 60.2 mg/g, respectively. The saturated MCNP could be easily regenerated and kept more than 95% of initial adsorption capacity stable after 10 regeneration cycles. A new magnetic material separation method was established to separate MCNP effectively. The continuous-operation instrument developed based on the MCNP could operate stably and guarantee that the concentration of arsenic meets the guideline limit of arsenic in drinking water regulated by the WHO.

2012 ◽  
Vol 18 (4-1) ◽  
pp. 497-508 ◽  
Author(s):  
Hussein Bahrami ◽  
Jaber Safdari ◽  
Ali Moosavian ◽  
Meisam Torab-Mostaedi

In this study, the adsorption of HF gas by three types of activated carbon has been investigated under vacuum condition. The effects of experimental parameters such as initial pressure of the HF gas, contact time and temperature on adsorption process have been investigated. The results showed that the adsorption of the HF gas onto activated carbon increased by increasing initial pressure of gas, while it decreased with increase in temperature. The Freundlich isotherm model fitted the equilibrium data better than the other isotherm models. Using Langmuir isotherm model, the maximum adsorption capacities of the first type, the second type and third type of activated carbon were 226.4, 268.8 and 258.9 mg/g, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that the adsorption process followed well pseudo-second-order kinetics. Thermodynamic parameters, the change of free energy (?G?), enthalpy (?H?) and entropy (?S?) of adsorption were calculated at the temperature range of 28-55?C. The results showed that the adsorption of HF on activated carbon is feasible, spontaneous and exothermic.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2586
Author(s):  
Inas A. Ahmed ◽  
Ahmed H. Ragab ◽  
Mohamed A. Habila ◽  
Taghrid S. Alomar ◽  
Enas H. Aljuhani

In this work, low-cost and readily available limestone was converted into nanolimestone chitosan and mixed with alginate powder and precipitate to form a triple nanocomposite, namely limestone—chitosan–alginate (NLS/Cs/Alg.), which was used as an adsorbent for the removal of brilliant green (BG) and Congo red (CR) dyes in aqueous solutions. The adsorption studies were conducted under varying parameters, including contact time, temperature, concentration, and pH. The NLS/Cs/Alg. was characterized by SEM, FTIR, BET, and TEM techniques. The SEM images revealed that the NLS/Cs/Alg. surface structure had interconnected pores, which could easily trap the pollutants. The BET analysis established the surface area to be 20.45 m2/g. The recorded maximum experimental adsorption capacities were 2250 and 2020 mg/g for CR and BG, respectively. The adsorption processes had a good fit to the kinetic pseudo second order, which suggests that the removal mechanism was controlled by physical adsorption. The CR and BG equilibrium data had a good fit for the Freundlich isotherm, suggesting that adsorption processes occurred on the heterogeneous surface with a multilayer formation on the NLS/Cs/Alg. at equilibrium. The enthalpy change (ΔH0) was 37.7 KJ mol−1 for CR and 8.71 KJ mol−1 for BG, while the entropy change (ΔS0) was 89.1 J K−1 mol−1 for CR and 79.1 J K−1 mol−1 BG, indicating that the adsorption process was endothermic and spontaneous in nature.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fatih Deniz ◽  
Elif Tezel Ersanli

In the present research paper, a biosorptive remediation practice for an aqueous medium sample polluted with manganese ions was implemented using the activated coastal waste of the Zostera marina plant. This is the first report in the literature on the utilization of current modified biological waste as a biosorbent substance for the removal of manganese ions from the water environment. The analyses of biosorbent characterization, environmental condition, kinetic, equilibrium, and comparison were performed to introduce the ability of prepared biosorbent for the removal of manganese from the aquatic medium. The biosorbent matter has a rough surface with numerous cavities and cracks and various functional groups for the biosorption of manganese. The environmental conditions significantly affected the manganese purification process, and the optimum working conditions were determined to be biosorbent quantity of 10 mg, pH of 6, manganese concentration of 30 mg L-1, and time of 60 min. The pseudo-second-order model best explained the kinetic data of biosorption operation. The biosorption equilibrium data were best described by the Freundlich isotherm. According to the Langmuir equilibrium model, the maximum purification potency was estimated to be 120.6 mg g-1. The comparison work revealed that the activated coastal waste of the Z. marina plant could be utilized as an effectual and promising biosorbent substance for the remediation of an aquatic environment contaminated with manganese ions.


Author(s):  
Qintao Yang ◽  
Liang Gong ◽  
Lili Huang ◽  
Qinglin Xie ◽  
Yijian Zhong ◽  
...  

A novel chitosan (CS)-modified diatomite (Dt) was prepared by a simple mixture in the mass ratio to remove As(V) from aqueous solution in this research. The CS-modified Dt adsorbent was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. The parameters to influence the adsorption of As(V) ion were studied under such conditions as kinetics, adsorption isotherm, and pH effect. The results revealed that adsorption of As(V) was initially rapid and the equilibrium time was reached after 40 min. The optimal value of the pH was 5.0 for better adsorption. The equilibrium data were well fitted to the Langmuir isotherm compared to the Freundlich isotherm, and exhibited the highest capacity and removal efficiency of 94.3% under an initial As(V) concentration of 5 mg/L. The kinetic data were well described by the pseudo-second-order model. In addition, 0.1 M NaOH has the best desorption efficiency of As(V) adsorbed on CS-modified Dt, and the removal efficiency of As(V) was still higher than 90% when after six adsorption-desorption cycles. These results showed that the CS-modified Dt could be considered as a potential adsorbent for the removal of As(V) in aqueous solution.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1003 ◽  
Author(s):  
Ainoa Murcia-Salvador ◽  
José A. Pellicer ◽  
María I. Fortea ◽  
Vicente M. Gómez-López ◽  
María I. Rodríguez-López ◽  
...  

The dyeing industry is one of the most polluting in the world. The adsorption of dyes by polymeric matrixes can be used to minimize the discharge of dyes into the environment. In the present study, chitosan-NaOH and β-cyclodextrin-epichlorohydrin polymers were used to remove the dye Direct Blue 78 from a wastewater model. To understand the adsorption behavior of Direct Blue 78 onto the polymers, adsorption rate and maximum adsorption capacity were calculated using kinetic tests and isotherm curves respectively. The kinetic data and mechanism of the adsorption process were analyzed by three models and the equilibrium data by three adsorption isotherms; also the different thermodynamic parameters were calculated. Results showed that the adsorption process follows pseudo-second-order kinetics in both polymers and the Langmuir isotherm best-fitted data for chitosan-NaOH polymer and the Freundlich isotherm for the β-CDs-EPI polymer. The adsorption process is exothermic in both cases and spontaneous for the β-CDs-EPI polymer to a certain temperature and not spontaneous for the chitosan-NaOH polymer and β-CDs-EPI polymer at higher temperatures. The complementary action of an advanced oxidation process eliminated >99% of the dye from water. The coupled process seems to be suitable for reducing the environmental impact of the dyeing industry.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


2019 ◽  
Vol 9 (4) ◽  
pp. 506-519
Author(s):  
Xiao Zhang ◽  
Xinyuan Li ◽  
Fan Zhang ◽  
Shaohao Peng ◽  
Sadam Hussain Tumrani ◽  
...  

Abstract Low-calcium fly ash (LC-F) and high-calcium fly ash (HC-F) were used to synthesize corresponding zeolites (LC-Z and HC-Z), then for adsorption of Se(IV) in water. The results showed that c zeolites can effectively adsorb Se(IV). The optimal adsorption conditions were set at contact time = 360 min; pH = 2.0; the amount of adsorbent = 5.0 g·L−1; temperature = 25 °C; initial Se(IV) concentration = 10 mg·L−1. The removal efficiency of HC-Z was higher than the LC-Z after it had fully reacted because the specific surface area (SSA) of HC-Z was higher than LC-Z. The adsorption kinetics model of Se(IV) uptake by HC-Z followed the pseudo-second-order model. The Freundlich isotherm model agreed better with the equilibrium data for HC-Z and LC-Z. The maximum Se(IV) adsorption capacity was 4.16 mg/g for the HC-Z and 3.93 mg/g for the LC-Z. For the coexisting anions, barely affected Se(IV) removal, while significant affected it. Regenerated zeolites still had high capacity for Se(IV) removal. In conclusion, zeolites synthesized from fly ashes are a promising material for adsorbing Se(IV) from wastewater, and selenium-loaded zeolite has the potential to be used as a Se fertilizer to release selenium in Se-deficient areas.


2010 ◽  
Vol 7 (3) ◽  
pp. 975-984 ◽  
Author(s):  
Himanshu Patel ◽  
R. T. Vashi

The present investigation describes adsorption of crystal violet dye from its aqueous solution onto tamarind (Tamarindus indica) fruit shell powder. Initial concentration, agitation speed and pH with various temperature have been studied, in which pH was found to be most effective. The adsorption data were mathematically analyzed using adsorption isotherm like Freundlich and Langmuir isotherm to study adsorption mechanism of crystal violet onto this seed powder. Freundlich isotherm was found to be most applicable. The equilibrium data were applied to intra-particle diffusion and adsorption kinetics. The reaction was found to be pseudo second order.


Sign in / Sign up

Export Citation Format

Share Document