scholarly journals Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanjun Kim ◽  
Sewoon Kim ◽  
Yonghee Song ◽  
Wantae Kim ◽  
Qi-Long Ying ◽  
...  

Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induceβ-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3βinhibitor) or negatively (IWR-1-endo, Axin stabilizer) control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested thatβ-catenin/TCF1 complex directly regulated the expression ofSox1during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

Human Cell ◽  
2008 ◽  
Vol 17 (3) ◽  
pp. 107-116 ◽  
Author(s):  
Shigeo SATTO ◽  
Bingbing LIU ◽  
Kazunari YOKOYAMA

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Weidong Zhu ◽  
Ichiro Shiojima ◽  
Li Zhi ◽  
Hiroyuki Ikeda ◽  
Masashi Yoshida ◽  
...  

Insulin-like growth factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the effects of IGFBPs appear to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. In this study we demonstrate that IGFBP-4 is a novel cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation of P19CL6 embryonal carcinoma cells and embryonic stem (ES) cells in vitro. Conversely, siRNA-mediated knockdown of IGFBP-4 in P19CL6 cells or ES cells attenuated cardiomyocyte differentiation, and morpholino-mediated knockdown of IGFBP-4 in Xenopus embryos resulted in severe cardiac defects and complete absence of the heart in extreme cases. We also demonstrate that the cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signaling. IGFBP-4 physically interacted with a Wnt receptor Frizzled 8 (Frz8) and a Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Moreover, the cardiogenic defects induced by IGFBP-4 knockdown both in vitro and in vivo was rescued by simultaneous inhibition of canonical Wnt signaling. Thus, IGFBP-4 is an inhibitor of the canonical Wnt signaling, and Wnt inhibition by IGFBP-4 is required for cardiogenesis. The present study provides a molecular link between IGF signaling and Wnt signaling, and suggests that IGFBP-4 may be a novel therapeutic target for heart diseases.


2008 ◽  
Vol 20 (9) ◽  
pp. 58
Author(s):  
G. R. Kafer ◽  
SA Lehnert ◽  
P. L. Kaye ◽  
R. J. Moser

Histone variants replace canonical histones in nucleosomes to serve numerous biological processes. This integration alters DNA properties to ultimately regulate gene expression. Previous mouse studies have indicated that some variants (H2AZ and H3.3) are essential for survival, but here we document and correlate histone expression patterns with key developmental events. Using quantitative reverse-transcribed PCR (qRT–PCR) we investigated the expression of 7 genes coding for H2A variants and 4 genes coding for H3 variants in mouse preimplantation embryos and in pluripotent R1 ES cells. Messenger RNA was extracted from pools of 3 embryos flushed from superovulated mice. Embryos were collected at five stages, zygotes, 2-cell embryos, morulae, blastocysts and hatching blastocysts (20 h, 44 h, 68 h, 92 h and 116 h post hCG respectively). The expression of H2A variant genes typically peaked within blastocysts. H2AZ and H2AX expression was 80 – 95% higher in blastocysts than other stages. Conversely, genes coding for H3 variants showed elevated expression in zygotes, where H3.3 expression was 85 – 95% higher and CENPA was ~75% higher than in later preimplantation stages. The expression profiles of histone remodellers SWI/SNF and CAF-1 correlated with the variants they are known to remodel (H2A and H3 variants respectively), suggesting an increased integration of those variants into nucleosomes. We also compared blastocyst and embryonic stem cell (ES cell) expression patterns. R1 ES cells express all histone variants, including H2A.Bbd, H3.1 and H3.2 which were not expressed in preimplantation embryos. Further, expression levels of every histone variant investigated differed significantly between R1 ES cells and hatching blastocysts (ANOVA, P < 0.05, n = 3 experiments). We conclude that histone variant expression reflects preimplantation developmental demands. Further, histone code expression profiles show significant change upon extended cell culture and maintenance of pluripotency as indicated by comparing in vivo hatching blastocysts to the R1 ES cell line.


2009 ◽  
Vol 21 (9) ◽  
pp. 101
Author(s):  
J. Antony ◽  
F. Oback ◽  
R. Broadhurst ◽  
S. Cole ◽  
C. Graham ◽  
...  

To produce live cloned mammals from adult somatic cells the nuclei of these cells must be first reprogrammed from a very restricted, cell lineage-specific gene expression profile to an embryo-like expression pattern, compatible with embryonic development. Although this has been achieved in a number of species the efficiency of cloning remains very low. Inadequate reprogramming of epigenetic marks in the donor cells correlated with aberrant embryonic gene expression profiles has been identified as a key cause of this inefficiency. Some of the most common epigenetic marks are chemical modifications of histones, the main structural proteins of chromatin. A range of different histone modifications, including acetylation and methylation, exists and can be attributed to either repression or activation of genes. One epigenetic mark which is known to be very stable and difficult to remove during reprogramming is the trimethylation of lysine 9 in histone H3 (H3K9Me3). To test the hypothesis that H3K9Me3 marks are a major stumbling block for successful cloning we are attempting to remove these marks by overexpression of the H3K9Me3 specific histone demethylase, jmjd2b, in donor cells, prior to their use for nuclear transfer. We have engineered mouse embryonic stem (ES) cells for the tet inducible expression of a fusion protein with a functional jmjd2b or non-functional mutant jmjd2b histone demethylase. Approximately 94% and 88% of the cells can be induced for the expression of functional and mutant jmjd2b-EGFP in the respective ES cell lines. Immunofluorescence analyses have shown that induction of functional jmjd2b-EGFP results in an approximately 50% reduction of H3K9Me3 levels compared to non-induced cells and induced mutant jmjd2b-EGFP cells. The comparison of the in-vitro embryo development following nuclear transfer with induced and non-induced donor cells show significantly better overall development to blastocysts and morulae from induced donor cells with reduced H3K9Me3 levels.


2009 ◽  
Vol 21 (9) ◽  
pp. 100
Author(s):  
M. B. Morris ◽  
N. Hamra ◽  
A. C. Lonic ◽  
F. Felquer

The phenotypic status of embryonic stem (ES) cells is controlled in part by signalling pathways which translate inputs mediated by extracellular molecules. An important extracellular protagonist in mouse ES cells is LIF (leukaemia inhibitory factor) which interacts with the gp130–LIFR receptor complex to activate a number of downstream signalling pathways, including the STAT3, MEK/ERK and PI3K/Akt. These pathways, together with others, interact in complex and sometimes competing ways to generate the well-known characteristics of mouse ES cells of self-renewal, high rates of proliferation, and pluripotence. The addition of a second molecule, L-proline, to the extracellular environment alters the pluripotent status of mouse ES cells, converting them to a second pluripotent population equivalent to the primitive ectoderm of the pre-gastrulating embryo. This conversion, from ES cells to primitive ectoderm-like cells, primes the latter for directed differentiation to specific cell types (1). Here we show, using inhibitor studies and kinome array analysis, that this small molecule appears to work by (i) changing the balance in activity of signalling pathways already stimulated by LIF and (ii) activating additional signalling pathways. Specifically, L-proline rapidly further activates the LIF-stimulated MEK/ERK pathway, tipping the balance in favour of primitive-ectoderm formation and away from ES-cell self-renewal sustained by LIF-mediated activation of the STAT3 pathway. In addition, L-proline rapidly stimulates other pathways including p38, mTOR and PI3K/Akt each of which contributes, to a greater or lesser extent, to the conversion to primitive ectoderm-like cells. These results indicate that (i) L-proline acts in novel ways to stimulate embryo-like developmental progression in ES cells and (ii) through the addition of small, nontoxic activators and inhibitors of signalling pathways, the differentiation of pluripotent ES cells might be controlled sufficiently well for the homogeneous production of specific cell types suitable for use in animal models of human disease.


2010 ◽  
Vol 30 (6) ◽  
pp. 1329-1340 ◽  
Author(s):  
Ping Xu ◽  
Roger J. Davis

ABSTRACT The c-Jun NH2-terminal kinase (JNK) is implicated in proliferation. Mice with a deficiency of either the Jnk1 or the Jnk2 genes are viable, but a compound deficiency of both Jnk1 and Jnk2 causes early embryonic lethality. Studies using conditional gene ablation and chemical genetic approaches demonstrate that the combined loss of JNK1 and JNK2 protein kinase function results in rapid senescence. To test whether this role of JNK was required for stem cell proliferation, we isolated embryonic stem (ES) cells from wild-type and JNK-deficient mice. We found that Jnk1 −/− Jnk2 −/− ES cells underwent self-renewal, but these cells proliferated more rapidly than wild-type ES cells and exhibited major defects in lineage-specific differentiation. Together, these data demonstrate that JNK is not required for proliferation or self-renewal of ES cells, but JNK plays a key role in the differentiation of ES cells.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Paulina A. Latos ◽  
Angela Goncalves ◽  
David Oxley ◽  
Hisham Mohammed ◽  
Ernest Turro ◽  
...  

Abstract Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.


2012 ◽  
Vol 302 (3) ◽  
pp. C494-C504 ◽  
Author(s):  
José A. Rodríguez-Gómez ◽  
Konstantín L. Levitsky ◽  
José López-Barneo

Ion channels participate in cell homeostasis and are involved in the regulation of proliferation and differentiation in several cell types; however, their presence and function in embryonic stem (ES) cells are poorly studied. We have investigated the existence of voltage-dependent inward currents in mouse ES cells and their ability to modulate proliferation and self-renewal. Patch-clamped ES cells had inactivating tetrodotoxin (TTX)-sensitive Na+ currents as well as transient Ca2+ currents abolished by the external application of Ni2+. Biophysical and pharmacological data indicated that the Ca2+ current is predominantly mediated by T-type (Cav3.2) channels. The number of cells expressing T-type channels and Cav3.2 mRNA levels increased at the G1/S transition of the cell cycle. TTX had no effect on ES cell proliferation. However, blockade of T-type Ca2+ currents with Ni2+ induced a decrease in proliferation and alkaline phosphatase positive colonies as well as reduced expression of Oct3/4 and Nanog, all indicative of loss in self-renewal capacity. Decreased alkaline phosphatase and Oct3/4 expression were also observed in cells subjected to small interfering RNA-induced knockdown for T-type (Cav3.2) Ca2+ channels, thus partially recapitulating the pharmacological effects on self-renewal. These results indicate that Cav3.2 channel expression in ES cells is modulated along the cell cycle being induced at late G1 phase. They also suggest that these channels are involved in the maintenance of the undifferentiated state of mouse ES cells. We propose that Ca2+ entry mediated by Cav3.2 channels might be one of the intracellular signals that participate in the complex network responsible for ES cell self-renewal.


Sign in / Sign up

Export Citation Format

Share Document