scholarly journals Carbon Monoxide Inhibits Tenascin-C Mediated Inflammation via IL-10 Expression in a Septic Mouse Model

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Jamal Uddin ◽  
Chun-shi Li ◽  
Yeonsoo Joe ◽  
Yingqing Chen ◽  
Qinggao Zhang ◽  
...  

Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammationin vitroandin vivo.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yixiao Luo ◽  
Rafi Ullah ◽  
Jinfeng Wang ◽  
Yuru Du ◽  
Shihao Huang ◽  
...  

Carbon monoxide (CO), a byproduct of heme catalyzed by heme oxygenase (HO), has been reported to exert antioxidant and anti-inflammatory actions, and to produce significant neuroprotective effects. The potential effects of CO and even HO on depressive-like behaviors are still poorly understood. Utilizing several approaches including adeno-associated virus (AAV)-mediated overexpression of HO-1, systemic CO-releasing molecules (CO-RMs), CO-rich saline or CO gas treatment procedures in combination with hydrogen peroxide (H2O2)-induced PC12 cell injury model, and lipopolysaccharide (LPS)-induced depression mouse model, the present study aimed to investigate the potential antidepressant- and anxiolytic-like effects of endogenous and exogenous CO administration in vivo and in vitro. The results of in vitro experiments showed that both CO-RM-3 and CO-RM-A1 pretreatment blocked H2O2-induced cellular injuries by increasing cell survival and decreasing cell apoptosis and necrosis. Similar to the effects of CO-RM-3 and CO-RM-A1 pretreatment, AAV-mediated HO-1 overexpression in the dorsal hippocampus produced significant antidepressant-like activities in mice under normal conditions. Further investigation showed that the CO gas treatment significantly blocked LPS-induced depressive- and anxiety-like behaviors in mice. Taken together, our results suggest that the activation of HO-1 and/or exogenous CO administration produces protective effects and exerts antidepressant- and anxiolytic-like effects. These data uncover a novel function of the HO-1/CO system that appears to be a promising therapeutic target for the treatment of depression and anxiety.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Li ◽  
Zeming Liu ◽  
Weng Zeng ◽  
Ziqi Wang ◽  
Chunping Liu ◽  
...  

Carbon monoxide (CO) gas therapy is a promising cancer treatment. However, gas delivery to the tumor site remains problematic. Proper tunable control of CO release in tumors is crucial to increasing the efficiency of CO treatment and reducing the risk of CO poisoning. To overcome such challenges, we designed ZCM, a novel stable nanotechnology delivery system comprising manganese carbonyl (MnCO) combined with anticancer drug camptothecin (CPT) loaded onto a zeolitic imidazole framework-8 (ZIF-8). After intravenous injection, ZCM gradually accumulates in cancerous tissues, decomposing in the acidic tumor microenvironment, releasing CPT and MnCO. CPT acts as a chemotherapy agent destroying tumors and producing copious H2O2. MnCO can react with the H2O2 to generate CO, powerfully damaging the tumor. Both in vitro and in vivo experiments indicate that the ZCM system is both safe and has excellent tumor inhibition properties. ZCM is a novel system for CO controlled release, with significant potential to improve future cancer therapy.


2007 ◽  
Vol 85 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Xue-Qin Ma ◽  
Hua-Jie Zhang ◽  
Ya-Hui Zhang ◽  
Yi-Hua Chen ◽  
Fang Wu ◽  
...  

. Caspase-1, the most efficient enzyme in processing the proinflammatory cytokines interleukin 1β and interleukin 18 in humans, is associated with inflammatory diseases such as rheumatoid arthritis, osteoarthritis, and some neuronal diseases. We previously reported that isoquinoline-1,3,4-trione and its derivatives are novel caspase-3 inhibitors that could attenuate apoptosis in vitro and in vivo. Here we report a novel derivative of isoquinoline-1,3,4-trione that is highly potent in inhibiting caspase-1 activity in an irreversible and slow-binding manner, thus inhibiting cellular caspase-1 activity and the maturation of interleukin 1β in U-937 cells.


Antioxidants ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 181 ◽  
Author(s):  
Aron Fisher ◽  
Chandra Dodia ◽  
Sheldon Feinstein

Nicotinamide adenine phosphate (NADPH) oxidase type 2 (Nox2), a major source of reactive oxygen species in lungs, plays an important role in tissue damage associated with acute inflammatory diseases. The phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6), called aiPLA2, is required for Nox2 activation through its role in the cellular generation of Rac, a key cytosolic component of the activation cascade. Lung surfactant protein A (SP-A) binds to Prdx6, inhibits its aiPLA2 activity, and prevents activation of Nox2. Based on protein docking software, we previously identified a 16 amino acid (aa) peptide derived from rat SP-A as the Prdx6 binding motif. We now identify the minimal effective sequences of rat/mouse and human SP-A as 9-aa sequences that we have called PLA2-inhibitory peptide (PIP).These sequences are PIP-1, rat/mouse; PIP-2, human; and PIP-3, a hybrid of PIPs 1&2. aiPLA2 activity in vitro was inhibited by 50% with ~7–10 µg PIP/µg Prdx6. Inhibition of the aiPLA2 activity and Nox2 activation of lungs in vivo was similar for intratracheal (IT) and intravenous (IV) administration of PIP-2, but required its incorporation into liposomes as a delivery vehicle; tissue ½ time for decrease of the in vivo inhibition of aiPLA2 activity after PIP-2 administration was ~50 h. These properties suggest that PIP-2 could be an effective therapeutic agent to prevent tissue injury associated with lung inflammation.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 531
Author(s):  
Javier Ávila-Román ◽  
Sara García-Gil ◽  
Azahara Rodríguez-Luna ◽  
Virginia Motilva ◽  
Elena Talero

Acute inflammation is a key component of the immune system’s response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


Sign in / Sign up

Export Citation Format

Share Document