scholarly journals Crosstalk between Red Blood Cells and the Immune System and Its Impact on Atherosclerosis

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Rachele Riganò

Atherosclerosis is a chronic multifactorial disease of the arterial wall characterized by inflammation, oxidative stress, and immune system activation. Evidence exists on a pathogenic role of oxidized red blood cells (RBCs) accumulated in the lesion after intraplaque hemorrhage. This review reports current knowledge on the impact of oxidative stress in RBC modifications with the surface appearance of senescent signals characterized by reduced expression of CD47 and glycophorin A and higher externalization of phosphatidylserine. The review summarizes findings indicating that oxidized, senescent, or stored RBCs, due to surface antigen modification and release of prooxidant and proinflammatory molecules, exert an impaired modulatory activity on innate and adaptive immune cells and how this activity contributes to atherosclerotic disease. In particular RBCs from patients with atherosclerosis, unlike those from healthy subjects, fail to control lipopolysaccharide-induced DC maturation and T lymphocyte apoptosis. Stored RBCs, accompanied by shedding of extracellular vesicles, stimulate peripheral blood mononuclear cells to release proinflammatory cytokines, augment mitogen-driven T cell proliferation, and polarize macrophages toward the proinflammatory M1 activation pathway. Collectively, literature data suggest that the crosstalk between RBCs with immune cells represents a novel mechanism by which oxidative stress can contribute to atherosclerotic disease progression and may be exploited for therapeutic interventions.

2015 ◽  
Vol 93 (6) ◽  
pp. 574-580 ◽  
Author(s):  
Bożena Bukowska ◽  
Paulina Sicińska ◽  
Aneta Pająk ◽  
Aneta Koceva-Chyla ◽  
Tadeusz Pietras ◽  
...  

The study indicates, for the first time, the changes in both ATPase and AChE activities in the membrane of red blood cells of patients diagnosed with COPD. Chronic obstructive pulmonary disease (COPD) is one of the most common and severe lung disorders. We examined the impact of COPD on redox balance and properties of the membrane of red blood cells. The study involved 30 patients with COPD and 18 healthy subjects. An increase in lipid peroxidation products and a decrease in the content of -SH groups in the membrane of red blood cells in patients with COPD were observed. Moreover, an increase in the activity of glutathione peroxidase and a decrease in superoxide dismutase, but not in catalase activity, were found as well. Significant changes in activities of erythrocyte membrane enzymes in COPD patients were also evident demonstrated by a considerably lowered ATPase activity and elevated AChE activity. Changes in the structure and function of red blood cells observed in COPD patients, together with changes in the activity of the key membrane enzymes (ATPases and AChE), can result from the imbalance of redox status of these cells due to extensive oxidative stress induced by COPD disease.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3645-3645
Author(s):  
Ramasamy Jagadeeswaran ◽  
Hong Lenny ◽  
Helen Zhang ◽  
Jennifer Afranie-Sakyi ◽  
Robert E. Molokie ◽  
...  

Abstract Sickle cell disease (SCD) is caused by a mutation in the β-globin gene resulting in a disease that affects more than 100,000 Americans and millions worldwide. Though pain is the hallmark of SCD, patients also suffer damage to most organ systems. Sickle cell hemoglobin (HbS) polymerization occurs when deoxygenated, rendering red blood cells rigid and fragile. Production of excessive reactive oxygen species (ROS) and intracellular hypoxia in RBCs further accelerates the pathology associated with SCD. Recently, vaso-occlusive crisis (VOC) and organ damage were established to be strongly associated with oxidative stress in RBCs. This occurs when there is an increase in oxidants that exceeds the cellular anti-oxidant defenses. Excessive ROS can trigger a cascade of oxidative reactions that damage membrane lipids, and essential enzymatic antioxidants such as GPx-1, ultimately leading to hemolysis and multi-organ dysfunction. ROS generation in RBCs of SCD patients is due to factors such as HbS auto-oxidation and potentially aberrant mitochondrial function. We recently determined that red blood cells obtained from SCD mice and SCD patients retain their mitochondria compared to control subjects. Mitochondria retained SCD RBCs are also associated with elevated levels of ROS and hemolysis. Oxidative stress in the RBCs of SCD patients may be elevated by lower levels of antioxidant proteins such as the selenium-dependent enzyme GPX1. GPX1 was first described as an enzyme capable of protecting hemoglobin from ROS and has been reported to be lower in the RBCs in SCD. Selenium levels are lower among African Americans in the Chicago area and elsewhere. In this regard, it is notable that in the United States, African Americans represent the majority of those with SCD. To investigate the relationship between selenium levels and SCD, we have utilized a mouse model of SCD to examine the impact of a reduced intake of selenium on parameters associated with SCD pathology. SCD mice on a selenium-deficient diet (<0.01 mg/kg diet) were compared to mice fed with a selenium-adequate diet (0.1mg/kg). SCD mice in the selenium-deficient group exhibited an increase in mitochondria retaining RBCs (Se deficient: 26%±6.9%, n=3 vs. Se adequate: 5 % ± 3.5%, n=3, p<0.01), reduced Hb levels (Se deficient 5.7± 0.17 g/dl, n=3 vs. Se adequate 7.0± 0.83 g/dl, n=4 p<0.05), and an increased RBC oxygen consumption rate (OCR). These results support the hypothesis that low selenium status likely results in reduced levels of anti-oxidant selenoproteins and enhanced SCD severity. Disclosures Lavelle: Global Blood therapeutics: Research Funding.


2002 ◽  
Vol 368 (3) ◽  
pp. 761-768 ◽  
Author(s):  
Svenja MEIERJOHANN ◽  
Rolf D. WALTER ◽  
Sylke MÜLLER

Malaria is one of the most devastating tropical diseases despite the availability of numerous drugs acting against the protozoan parasite Plasmodium in its human host. However, the development of drug resistance renders most of the existing drugs useless. In the malaria parasite the tripeptide glutathione is not only involved in maintaining an adequate intracellular redox environment and protecting the cell against oxidative stress, but it has also been shown that it degrades non-polymerized ferriprotoporphyrin IX (FP IX) and is thus implicated in the development of chloroquine resistance. Glutathione levels in Plasmodium-infected red blood cells are regulated by glutathione synthesis, glutathione reduction and glutathione efflux. Therefore the effects of drugs that interfere with these metabolic processes were studied to establish possible differences in the regulation of the glutathione metabolism of a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodiumfalciparum. Growth inhibition of P. falciparum 3D7 by d,l-buthionine-(S,R)sulphoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase (γ-GCS), and by Methylene Blue (MB), an inhibitor of gluta thione reductase (GR), was significantly more pronounced than inhibition of P.falciparum Dd2 growth by these drugs. These results correlate with the higher levels of total glutathione in P. falciparum Dd2. Short-term incubations of Percoll-enriched trophozoite-infected red blood cells in the presence of BSO, MB and N,N1-bis(2-chloroethyl)-N-nitrosourea and subsequent determinations of γ-GCS activities, GR activities and glutathione disulphide efflux revealed that maintenance of intracellular glutathione in P. falciparum Dd2 is mainly dependent on glutathione synthesis whereas in P. falciparum 3D7 it is regulated via GR. Generally, P. falciparum Dd2 appears to be able to sustain its intracellular glutathione more efficiently than P. falciparum 3D7. In agreement with these findings is the differential susceptibility to oxidative stress of both parasite strains elicited by the glucose/glucose oxidase system.


Author(s):  
Rodney C. Daniels ◽  
Hyesun Jun ◽  
Robertson D. Davenport ◽  
Maryanne M. Collinson ◽  
Kevin R. Ward

2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


1970 ◽  
Vol 19 (4) ◽  
pp. 3038-3044
Author(s):  
Helen Chioma Okoye ◽  
Chilota Chibuife Efobi ◽  
Josephat Maduabuchi Chinawa ◽  
Odutola Israel Odetunde ◽  
Awoere Tamunosiki Chinawa ◽  
...  

Background: Maternal factors are determinants of birth outcome which includes birth weight, haematological indices and mode of delivery of their babies.Objectives: To determine the impact of parity and gestational age of hypertensive mothers on some neonatal variables.Methods: A hospital based cross-sectional study of measurement of neonatal variables (birth weight, red blood cells and mode of delivery) among hypertensive mothers and their controls was conducted over a period of six months. Data were analyzed using the Statistical Package for Social Sciences program (SPSS), version 20.Results: There were statistically significant differences in means between the neonates of the hypertensive group and non-hypertensive group for maternal age (t =1.61, p = 0.002), baby weight (t =2.87, p < 0.001), haemoglobin (Hb) (t =4.65, p = 0.010) and packed cell volume (PCV) (t =4.75, p = 0.009), but none for gravidity (t =1.95, p = 0.927)For all subjects, there was poor correlation between gestational age and variables; birth weight , haemoglobin (Hb), packed cell volume (PCV), nucleated red blood cell (nRBC) and parity. Likewise, parity poorly correlated with variables; age, birth weight, Hb, PCV, and nRBC. There was a statistically significant association between mode of delivery and hypertension (χ2 =53.082, p <0.001) but none with having a family history of hypertension (χ2 =1.13, p = 0.287).Conclusion: Parity and gestational age of mothers with hypertension have no impact on birth weight and red cells when compared with their non-hypertensive counterparts. However, mothers of babies delivered by elective and emergency caesarean section were about 2-3 times more likely to be hypertensive than those that delivered through spontaneous vertex delivery.Keywords: Hypertension; neonate; gestational age; parity.


2015 ◽  
Vol 67 (2) ◽  
pp. 535-545 ◽  
Author(s):  
Marko Prokic ◽  
Milica Paunovic ◽  
Milos Matic ◽  
Natasa Djordjevic ◽  
Branka Ognjanovic ◽  
...  

Aspartame (ASP) is one of the most widely used nonnutritive sweeteners. This study investigates the chronic effects of ASP on hematological and biochemical parameters, and its effects on the oxidative/antioxidative status in the red blood cells of Wistar albino rats. Rats were provided with ASP (40 mg/kg/daily for six weeks) in drinking water. Increased food and fluid intake was observed in the ASP-treated rats. Total body mass was significantly decreased in the ASP-treated rats. Treatment with ASP caused an increase in the concentrations of glucose, cholesterol, LDL-cholesterol, and in the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as a decrease in the levels of HDL-cholesterol in the serum. A significant decline in the number of white blood cells (WBC) was observed after ASP uptake. Based on the results we conclude that ASP induces oxidative stress, observed as an alteration of the glutathione redox status, which leads to increased concentrations of nitric oxide (NO) and lipid peroxides (LPO) in the red blood cells. Changes in biochemical parameters, lipid metabolism, as well as changes in the levels of oxidative stress markers and the appearance of signs of liver damage indicate that chronic use of ASP can lead to the development of hyperglycemia, hypercholesterolemia and associated diseases.


2020 ◽  
Author(s):  
Rodney C Daniels ◽  
Hyesun Jun ◽  
Robertson D Davenport ◽  
Maryanne M Collinson ◽  
Kevin R Ward

Abstract Background Stored Red Blood Cells (RBCs) may undergo oxidative stress over time, with functional changes affecting critical tasks such as oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and the redox potential (RP) that must be maintained for proper cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions and transfusion-related morbidities. Direct measures of RP may allow for evaluation of erythrocyte quality and enable corrections of RP prior to transfusion. Methods Multiple random RBC segments were tested, ranging in age from 5 to 40 days at 5 day intervals. RP was recorded by measuring open circuit potential of RBCs using novel nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood samples from 10 healthy volunteers. RP measures were compared between groups of aged RBCs, and with volunteer blood. Results Stored RBCs show time-dependent increases in RP. There were significant differences in Day 5 RP compared to all other groups (p≤0.005), Day 10-15 vs ages ≥ Day 20 (p≤0.025), Day 20-25 vs Day 40 (p=0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age. However, storage time alone does not predict the ultimate RP value measured from a given unit.Conclusions There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be important independent of storage time and may serve as a marker of RBC quality and state of oxidative stress. RP measurements may also provide a target by which to restore RP balance in aged pRBCs, improving their clinical effectiveness while reducing associated morbidities.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Claire Healy ◽  
Natalia Munoz-Wolf ◽  
Janné Strydom ◽  
Lynne Faherty ◽  
Niamh C. Williams ◽  
...  

AbstractNutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.


Sign in / Sign up

Export Citation Format

Share Document