scholarly journals Exploring Dynamic Brain Functional Networks Using Continuous “State-Related” Functional MRI

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xun Li ◽  
Yu-Feng Zang ◽  
Han Zhang

We applied a “temporal decomposition” method, which decomposed a single brain functional network into several “modes”; each of them dominated a short temporal period, on a continuous, “state-” related, “finger-force feedback” functional magnetic resonance imaging experiment. With the hypothesis that attention and internal/external information processing interaction could be manipulated by different (real and sham) feedback conditions, we investigated functional network dynamics of the “default mode,” “executive control,” and sensorimotor networks. They were decomposed into several modes. During real feedback, the occurrence of “default mode-executive control competition-related” mode was higher than that during sham feedback (P=0.0003); the “default mode-visual facilitation-related” mode more frequently appeared during sham than real feedback (P=0.0004). However, the dynamics of the sensorimotor network did not change significantly between two conditions (P>0.05). Our results indicated that the visual-guided motor feedback involves higher cognitive functional networks rather than primary motor network. The dynamics monitoring of inner and outside environment and multisensory integration could be the mechanisms. This study is an extension of our previous region-specific and static-styled study of our brain functional architecture.

2021 ◽  
pp. 135245852110181
Author(s):  
Giulia Bommarito ◽  
Anjali Tarun ◽  
Younes Farouj ◽  
Maria Giulia Preti ◽  
Maria Petracca ◽  
...  

Background: Modifications in brain function remain relatively unexplored in progressive multiple sclerosis (PMS), despite their potential to provide new insights into the pathophysiology of the disease at this stage. Objectives: To characterize the dynamics of functional networks at rest in patients with PMS, and the relation with clinical disability. Methods: Thirty-two patients with PMS underwent clinical and cognitive assessment. The dynamic properties of functional networks, retrieved from transient brain activity, were obtained from patients and 25 healthy controls (HCs). Sixteen HCs and 19 patients underwent a 1-year follow-up (FU) clinical and imaging assessment. Differences in the dynamic metrics between groups, their longitudinal changes, and the correlation with clinical disability were explored. Results: PMS patients, compared to HCs, showed a reduced dynamic functional activation of the anterior default mode network (aDMN) and a decrease in its opposite-signed co-activation with the executive control network (ECN), at baseline and FU. Processing speed and visuo-spatial memory negatively correlated to aDMN dynamic activity. The anti-couplings between aDMN and auditory/sensory-motor network, temporal-pole/amygdala, or salience networks were differently associated with separate cognitive domains. Conclusion: Patients with PMS presented an altered aDMN functional recruitment and anti-correlation with ECN. The aDMN dynamic functional activity and interaction with other networks explained cognitive disability.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2092-P
Author(s):  
LETICIA ESPOSITO SEWAYBRICKER ◽  
SUSAN J. MELHORN ◽  
MARY K. ASKREN ◽  
MARY WEBB ◽  
VIDHI TYAGI ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Robyn L. Miller ◽  
Zening Fu ◽  
Yuhui Du ◽  
...  

BackgroundAlzheimer’s disease (AD) is the most common age-related problem and progresses in different stages, including mild cognitive impairment (early stage), mild dementia (middle-stage), and severe dementia (late-stage). Recent studies showed changes in functional network connectivity obtained from resting-state functional magnetic resonance imaging (rs-fMRI) during the transition from healthy aging to AD. By assuming that the brain interaction is static during the scanning time, most prior studies are focused on static functional or functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) explores temporal patterns of functional connectivity and provides additional information to its static counterpart.MethodWe used longitudinal rs-fMRI from 1385 scans (from 910 subjects) at different stages of AD (from normal to very mild AD or vmAD). We used group-independent component analysis (group-ICA) and extracted 53 maximally independent components (ICs) for the whole brain. Next, we used a sliding-window approach to estimate dFNC from the extracted 53 ICs, then group them into 3 different brain states using a clustering method. Then, we estimated a hidden Markov model (HMM) and the occupancy rate (OCR) for each subject. Finally, we investigated the link between the clinical rate of each subject with state-specific FNC, OCR, and HMM.ResultsAll states showed significant disruption during progression normal brain to vmAD one. Specifically, we found that subcortical network, auditory network, visual network, sensorimotor network, and cerebellar network connectivity decrease in vmAD compared with those of a healthy brain. We also found reorganized patterns (i.e., both increases and decreases) in the cognitive control network and default mode network connectivity by progression from normal to mild dementia. Similarly, we found a reorganized pattern of between-network connectivity when the brain transits from normal to mild dementia. However, the connectivity between visual and sensorimotor network connectivity decreases in vmAD compared with that of a healthy brain. Finally, we found a normal brain spends more time in a state with higher connectivity between visual and sensorimotor networks.ConclusionOur results showed the temporal and spatial pattern of whole-brain FNC differentiates AD form healthy control and suggested substantial disruptions across multiple dynamic states. In more detail, our results suggested that the sensory network is affected more than other brain network, and default mode network is one of the last brain networks get affected by AD In addition, abnormal patterns of whole-brain dFNC were identified in the early stage of AD, and some abnormalities were correlated with the clinical score.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiaxin Hao ◽  
Wenyi Luo ◽  
Yuhai Xie ◽  
Yu Feng ◽  
Wei Sun ◽  
...  

Background and PurposeTranscranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique for focal epilepsy. Because epilepsy is a disease affecting the brain network, our study was aimed to evaluate and predict the treatment outcome of cathodal tDCS (ctDCS) by analyzing the ctDCS-induced functional network alterations.MethodsEither the active 5-day, −1.0 mA, 20-min ctDCS or sham ctDCS targeting at the most active interictal epileptiform discharge regions was applied to 27 subjects suffering from focal epilepsy. The functional networks before and after ctDCS were compared employing graph theoretical analysis based on the functional magnetic resonance imaging (fMRI) data. A support vector machine (SVM) prediction model was built to predict the treatment outcome of ctDCS using the graph theoretical measures as markers.ResultsOur results revealed that the mean clustering coefficient and the global efficiency decreased significantly, as well as the characteristic path length and the mean shortest path length at the stimulation sites in the fMRI functional networks increased significantly after ctDCS only for the patients with response to the active ctDCS (at least 20% reduction rate of seizure frequency). Our prediction model achieved the mean prediction accuracy of 68.3% (mean sensitivity: 70.0%; mean specificity: 67.5%) after the nested cross validation. The mean area under the receiver operating curve was 0.75, which showed good prediction performance.ConclusionThe study demonstrated that the response to ctDCS was related to the topological alterations in the functional networks of epilepsy patients detected by fMRI. The graph theoretical measures were promising for clinical prediction of ctDCS treatment outcome.


2020 ◽  
Vol 14 ◽  
Author(s):  
Benjamin M. Rosenberg ◽  
Eva Mennigen ◽  
Martin M. Monti ◽  
Roselinde H. Kaiser

Prior research has shown that during development, there is increased segregation between, and increased integration within, prototypical resting-state functional brain networks. Functional networks are typically defined by static functional connectivity over extended periods of rest. However, little is known about how time-varying properties of functional networks change with age. Likewise, a comparison of standard approaches to functional connectivity may provide a nuanced view of how network integration and segregation are reflected across the lifespan. Therefore, this exploratory study evaluated common approaches to static and dynamic functional network connectivity in a publicly available dataset of subjects ranging from 8 to 75 years of age. Analyses evaluated relationships between age and static resting-state functional connectivity, variability (standard deviation) of connectivity, and mean dwell time of functional network states defined by recurring patterns of whole-brain connectivity. Results showed that older age was associated with decreased static connectivity between nodes of different canonical networks, particularly between the visual system and nodes in other networks. Age was not significantly related to variability of connectivity. Mean dwell time of a network state reflecting high connectivity between visual regions decreased with age, but older age was also associated with increased mean dwell time of a network state reflecting high connectivity within and between canonical sensorimotor and visual networks. Results support a model of increased network segregation over the lifespan and also highlight potential pathways of top-down regulation among networks.


2016 ◽  
Vol 11 (5) ◽  
pp. 1486-1496 ◽  
Author(s):  
Dennis van der Meer ◽  
Catharina A. Hartman ◽  
Raimon H. R. Pruim ◽  
Maarten Mennes ◽  
Dirk Heslenfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document