scholarly journals Freeze-Thaw Resistance of Normal and High Strength Concretes Produced with Fly Ash and Silica Fume

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Cenk Karakurt ◽  
Yıldırım Bayazıt

This study is based on determination of the freeze-thaw resistance of air-entrained and non-air-entrained normal strength concrete (NC) and high strength concrete (HSC) produced with fly ash and silica fume according to surface scaling. The procedure allows us to measure the amount of scaling per unit surface area due to a number of well defined freezing and thawing cycles in the presence of deicing salt. The weight loss, surface scaling, moisture uptake, and internal damage were measured after 0 and after every 4th freeze-thaw cycle. The test results showed that the freeze-thaw resistance is influenced directly by the compressive strength property of the concrete. Silica fume significantly reduced the resistance of normal strength concrete against freeze-thaw effect without plasticizing agent. The surface scaling of silica fume concrete without admixture was 22% higher than reference normal concrete.

2013 ◽  
Vol 47 (10) ◽  
pp. 1773-1785 ◽  
Author(s):  
Pierre Rossi ◽  
Jean Philippe Charron ◽  
Maléna Bastien-Masse ◽  
Jean-Louis Tailhan ◽  
Fabrice Le Maou ◽  
...  

2018 ◽  
Vol 21 (11) ◽  
pp. 1723-1732 ◽  
Author(s):  
Venkatesh KR Kodur

High-strength concrete is being increasingly used in a number of building applications, where structural fire safety is one of the primary design considerations. Many research studies clearly indicate that the fire performance of high-strength concrete is different from that of normal-strength concrete and that high-strength concrete may not exhibit same level of performance as normal-strength concrete under fire conditions. This article outlines key characteristics that influence the performance of high-strength concrete structural members under fire conditions. Data generated in previous experimental and numerical studies are utilized to illustrate various factors that influence fire performance of high-strength concrete structural members. Based on the published data, observations and trends on the behavior of high-strength concrete members, innovative strategies for mitigating spalling and enhancing fire resistance of high-strength concrete structural members are proposed.


2000 ◽  
Vol 3 (3) ◽  
pp. 245-253 ◽  
Author(s):  
P. Mendis ◽  
C. French

The use of high-strength concrete is becoming popular around the world. The american code, ACI 318–95 is used in many countries to calculate the development length of deformed bars in tension. However, current design provisions of ACI 318–95 are based on empirical relationships developed from tests on normal strength concrete. The results of a series of tests on high-strength concrete, reported in the literature, from six research studies are used to review the existing recommendations in ACI 318–95 for design of splices and anchorage of reinforcement. It is shown that ACI 318–95 equations may be unconservative for some cases beyond 62 MPa (9 ksi).


2017 ◽  
Vol 886 ◽  
pp. 159-163 ◽  
Author(s):  
Suppachai Sinthaworn

Slump of fresh concrete, compressive strength and water penetration depth under pressure of fly ash concrete incorporate with quarry waste as fine aggregate were investigated. The cementitious materials of the concrete includes ordinary Portland cement 80% and fly ash 20% by weight of cementitious. The mix proportions of the concrete were set into two classes of compressive strength. The results show that fly ash enhances workability of both concretes (normal concrete and concrete incorporate with quarry waste). Increasing the percentage of quarry dusts as fine aggregate in concrete seem negligible effect on the compressive strength whereas adding fly ash shows a slightly improve the compressive strength in the case of cohesive concrete mixture. Besides, adding the suitable amount of fly ash could improve the permeability of concrete. Therefore, fly ash could be a good admixture to improve the water resistant of normal strength concrete and also could be a supplemental material to improve the compressive strength of normal high strength concrete.


2004 ◽  
Vol 34 (4) ◽  
pp. 549-555 ◽  
Author(s):  
Chai Jaturapitakkul ◽  
Kraiwood Kiattikomol ◽  
Vanchai Sata ◽  
Theerarach Leekeeratikul

2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 88-95
Author(s):  
Tang Van Lam ◽  
Nguyen Trong Dung ◽  
Dang Van Phi ◽  
Vu Kim Dien ◽  
Nguyen Van Duong ◽  
...  

The sustainability of constructions depends on the resistance of concrete and steel reinforcement to physical and chemical aggressors from the environment. High – strength concrete with a high consistency, low permeability and resistance to environmental erosion, is preferred to be used in infrastructure construction, especially in coastal and islands areas. This paper aims to study on the mechanical properties of high-strength concrete using a mixture of fly ash and silica fume additive. Experimental obtained results show that high-strength concrete containing fly ash and silica fume with different mixing ratios have good performance (spread: 390 ÷ 625 mm and slump: 14 ÷ 20,5cm) and high compressive strength at 28 days (47 to 75MPa). In addition, the protection time of steel reinforcement according to NT Build 356-2009 can reach 85 days for samples containing 10% silica fume. This result shows that the high-strength concrete made from a mixture of fly ash and silica fume can be used in coastal and island infrastructure.


2012 ◽  
Vol 446-449 ◽  
pp. 718-727
Author(s):  
Hamid Reza Azizipesteh Baglo ◽  
Mohammed Raoof

In a number of previous publications, results were reported for a series of extensive and carefully conducted tests on large scale reinforced concrete (R.C.) beams with various extents of loss of concrete cover and exposure of main reinforcement along their spans, with such areas of simulated damage being located within their regions which are dominated by either shear or flexure. These tests on R.C. beams made with normal strength concrete have covered a wide range of first order beam design parameters, with their results used to verify the generality of various theoretical models. In the present paper, much attention will be devoted to various structural characteristics (such as ultimate strength, flexural stiffness, etc.) of similar damaged R.C. beams with the proviso that, instead of the previously used normal strength concrete, the beams are made with high strength concrete. No such results (for high strength R.C. beams) have previously been reported in the public domain.


Sign in / Sign up

Export Citation Format

Share Document