scholarly journals Correlation between Porosity and Electrical-Mechanical Properties of Carbon Nanotube Buckypaper with Various Porosities

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ling Liu ◽  
Qiaoxin Yang ◽  
Jingwen Shen

Porous carbon nanotube (CNT) buckypapers (BPs) with various porosities were obtained by using a positive pressure filtration method. The porosity of the BPs fell into a wide range of 11.3–39.3%. Electrical conductivities and tensile mechanical properties of the prepared BPs were then measured and correlated with the porosity of the CNT BPs. Results demonstrated that the conductivities, tensile strength, and elastic modulus of the BPs could decrease by increasing their porosity. The elongation at break of the BPs on the other hand did increase significantly, suggesting improved toughness of the BPs. The obtained electrical conductivity and tensile strength of the porous BPs can reach nearly 0.6 S/m and 26 MPa, respectively, which may be potentially useful in composites reinforcement and conductive materials.

2011 ◽  
Vol 279 ◽  
pp. 106-110 ◽  
Author(s):  
Jing Long Gao ◽  
Yan Hui Liu ◽  
Dong Ming Li

Recycled polypropylene (PP)/carbon nanotube (CNTs) composites with different CNTs fraction were prepared by the melting blend method. The effects of CNTs content on the thermal properties and mechanical properties were mainly investigated. The results show that the thermal degradation of the composites shifts towards higher temperatures as the concentration of CNTs is increased. With increasing CNTs content, tensile strength and elongation at break increase firstly and then decrease. When CNTs content is 3 %, tensile strength and elongation at break are 34.71 and 27.00, respectively. Moreover, a unique tensile rupture characteristic was found by SEM observations, which explained the critical broken theory of the PP/CNTs composites.


2021 ◽  
Vol 904 ◽  
pp. 250-254
Author(s):  
Shuang Chen ◽  
Jui Chin Chen ◽  
Chi Hui Tsou ◽  
Peng Cheng Yang ◽  
Chun Fen Jia ◽  
...  

In this study, PVA/CS composite hydrogels were prepared by means of freezing and thawing cycles of agricultural wastes, corn straw (CS) and polyvinyl alcohol (PVA). The mechanical properties of the composite hydrogels were analyzed by universal tensile device. The effects of CS on tensile strength and elongation at break of PVA/CS composite hydrogels were analyzed. On the other hand, PVA and PVA/CS composite hydrogels were also freeze-dried to investigate the mechanical properties of all hydrogels after drying.


2012 ◽  
Vol 488-489 ◽  
pp. 612-616 ◽  
Author(s):  
Anyaporn Boonmahitthisud ◽  
Saowaroj Chuayjuljit

In this study, natural rubber/styrene butadiene rubber (NR/SBR) and NR/carboxylated styrene butadiene rubber (NR/XSBR) nanocomposites with carbon nanotube (CNT) were prepared by a latex compounding method. The dry weight ratio of either NR/SBR or NR/XSBR was fixed to 80/20 and the CNT loading in each blend was varied from 0.1 to 0.4 phr. The nanocomposite latices were cast into sheets on a glass mold and then cured at 80°C for 3 h. The tensile properties (tensile strength, modulus at 300% strain, elongation at break) and dynamic mechanical properties (storage modulus, loss tangent) of the vulcanizates were then evaluated. The results showed that the addition of CNT at a very loading could enhance the tensile strength, modulus at 300% strain and storage modulus of these two rubber bends in a dose dependent manner, except that the tensile strength peaked at an optimum filler level, declining at higher filler loadings, whilst the elongation at break deteriorated. Moreover, the tensile strength and modulus at 300% strain of the NR/XSBR nanocomposites appeared to be higher than those of the NR/SBR nanocomposites at the same CNT loadings.


2013 ◽  
Vol 562-565 ◽  
pp. 764-769
Author(s):  
Yi He ◽  
Lan Ma ◽  
Peng Hai ◽  
Jin Bo Li

Polyesteramide (PEA) have good mechanical properties, compositing with multi-walled carbon nanotubes (MWNTs) can further improve the mechanical properties of the polymer. In this paper, PEA/MWNTs were synthesized in-suit using the reinforcement of nanocomposite. SEM and tensile testing were used to characterize the composited polyesteramides. The results show that MWNTs can be uniformly dispersed in the composited polyesteramides, the PEA/MWNTs tensile strength and Elongation at break increased.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


Sign in / Sign up

Export Citation Format

Share Document