Effect of Corn Straw Addition on Mechanical Properties of Polyvinyl Alcohol Hydrogel

2021 ◽  
Vol 904 ◽  
pp. 250-254
Author(s):  
Shuang Chen ◽  
Jui Chin Chen ◽  
Chi Hui Tsou ◽  
Peng Cheng Yang ◽  
Chun Fen Jia ◽  
...  

In this study, PVA/CS composite hydrogels were prepared by means of freezing and thawing cycles of agricultural wastes, corn straw (CS) and polyvinyl alcohol (PVA). The mechanical properties of the composite hydrogels were analyzed by universal tensile device. The effects of CS on tensile strength and elongation at break of PVA/CS composite hydrogels were analyzed. On the other hand, PVA and PVA/CS composite hydrogels were also freeze-dried to investigate the mechanical properties of all hydrogels after drying.


2016 ◽  
Vol 36 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Khalid Nawaz ◽  
Muhammad Ayub ◽  
Noaman Ul-Haq ◽  
M.B. Khan ◽  
Muhammad Bilal Khan Niazi ◽  
...  

Abstract Large area graphene oxide sheets were synthesized, dispersed in water and used as nanofiller for mechanical improvement in terms of Young’s modulus and ultimate tensile strength (UTS) of polyvinyl alcohol (PVA) at low loading. The molecular level dispersion and interfacial interactions between the graphene oxides and polymeric matrix PVA were the real challenges. An excellent improvement in mechanical properties at 0.35 wt% loading was observed. Modulus improved from 1.58 GPa to 2.72 GPa (~71% improvement), UTS improved from 120 MPa to 197 MPa (~65% improvement), and in spite of these improvements, interestingly, there was no fall in elongation at break at this loading.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ling Liu ◽  
Qiaoxin Yang ◽  
Jingwen Shen

Porous carbon nanotube (CNT) buckypapers (BPs) with various porosities were obtained by using a positive pressure filtration method. The porosity of the BPs fell into a wide range of 11.3–39.3%. Electrical conductivities and tensile mechanical properties of the prepared BPs were then measured and correlated with the porosity of the CNT BPs. Results demonstrated that the conductivities, tensile strength, and elastic modulus of the BPs could decrease by increasing their porosity. The elongation at break of the BPs on the other hand did increase significantly, suggesting improved toughness of the BPs. The obtained electrical conductivity and tensile strength of the porous BPs can reach nearly 0.6 S/m and 26 MPa, respectively, which may be potentially useful in composites reinforcement and conductive materials.



2013 ◽  
Vol 380-384 ◽  
pp. 4224-4227
Author(s):  
Ming Fang Xie ◽  
Sheng Qiang

This paper discusses the synthesis and preparation of polyvinyl alcohol based nanocomposites through the use of miniature thermoplastics processing technology. It studies the influence of different process conditions, the amount of raw materials and water on the processing performance, tensile strength and elongation at break of polyvinyl alcohol based nanocomposites. Studies have shown that using two miniature thermoplastic processes does not have much influence on the mechanical properties of polyvinyl alcohol based nanocomposites, different amount of polyvinyl alcohol will lead to enhancement of the tensile strength of the polyvinyl alcohol based nanocomposites system by the increasing amount of glycerin, and the water content has a great influence on the performance of polyvinyl alcohol based nanocomposites. To this end, according to the analysis of experimental results, it can obtain preparation conditions and influencing factors of polyvinyl alcohol based nanocomposites with the miniature thermoplastic processing conditions, and provide a new theoretical method and means for nanocomposites.



2019 ◽  
Vol 14 (29) ◽  
pp. 107-124
Author(s):  
Nahida J. Hameed

The work concerned with studying the effect of (SiO2) addition as afiller on the adhesive properties of (PVA). Samples were prepared assheets by using casting method. The mechanical properties showedthat increase in tensile strength from (34MPa) to (68MPa) when(SiO2) added to (PVA). The adhesive strength showed that jointproperties depend upon specific adhesive characteristic of material(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,the joint design, and adherent type (Sponge Rubber(SR), Naturalleather (NL), Vulcanized Rubber(VR), and Cartoon). The resultsproved the tensile strength increased with (SiO2) ratio, so it can beused as the adhesive material. Shear strength showed an increasewith (SiO2) ratio of sponge rubber, and cartoon adherent, whereas itwas increased up to 2.5% for Natural Leather, and VulcanizedRubber then decreased; That suggested it is most suitable for spongerubber adhesive and cartoon than the other adherents.



2014 ◽  
Vol 960-961 ◽  
pp. 262-269
Author(s):  
Ke Chen ◽  
Rui Wang

The natural rubber/polyvinyl alcohol (NR/PVA) blends containing various compatilizers grafted from NR were prepared using latex compounding techniques. The effects of various compatilizers on the morphology, mechanical properties and thermal behaviors were studied. The interface compatible performance of the blends were greatly improved with the presence of the compatilizers, and the phase dispertion of the blends achieved the best effect under the action of epoxidized natural rubber (ENR). The onset temperature of the thermal decomposition of ENR and graft copolymerization of methyl methacrylate (MMA) onto NR (NR-g-PMMA) increased obviously, but the maleic anhydride grafted onto NR (NR-g-MAH) drop obviously comparing to that of NR. The thermal stability of the blends were inferior to NR. With the presence of ENR, the tensile strength and elongation at break obtained great value which was ascribed the presence of the best phase dispertion, while the tear strength and shore A hardness obtained great value due to the addition of MAH-g-NR.



2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.



Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.



2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.



2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.



Sign in / Sign up

Export Citation Format

Share Document